332 research outputs found

    Political Competency: Understanding How College Students Develop Their Political Identity

    Get PDF
    Constructing models of how students come to understand their identity is a hallmark of student development theory. Yet, there is little published research or institutional attention devoted to the examination of students’ political identity development. In this article, the authors apply existing student development theories to this topic and describe ways that student affairs practitioners can facilitate student growth in this important dimension of adulthood

    Low-Noise Speed-Optimized Large Area CMOS Avalanche Photodetector for Visible Light Communication

    Get PDF
    Mean-gain and excess-noise measurements are presented for a 350 × 350 μm 2 P+/N-well/P-sub and a 270 × 270 μm 2 N-well/P-sub avalanche photodetectors fabricated using 0.13-μm CMOS technology. The active area of the P+/N-well/P-sub device was divided into multiple subsections to decrease transit time and increase speed. For the P+/N-well structure, remarkably low excess-noise factors of 4.1 and 4 were measured at a mean gain of 16 corresponding to a k value of approximately 0.1, using a 542 (633) nm laser. For a variant N-well/P-sub structure, excess-noise factors of 6.5 and 6.2 were measured at a mean-gain of 16 corresponding to a k value of approximately 0.3. The proposed CMOS APDs with high gain, low noise, low avalanche breakdown voltage (below approximately 12 V) and low dark-currents (approximately nA) would be attractive for low-cost optical receivers in visible-light communication systems

    Processing of aluminum-graphite particulate metal matrix composites by advanced shear technology

    Get PDF
    Copyright @ 2009 ASM International. This paper was published in Journal of Materials Engineering and Performance 18(9) and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.To extend the possibilities of using aluminum/graphite composites as structural materials, a novel process is developed. The conventional methods often produce agglomerated structures exhibiting lower strength and ductility. To overcome the cohesive force of the agglomerates, a melt conditioned high-pressure die casting (MC-HPDC) process innovatively adapts the well-established, high-shear dispersive mixing action of a twin screw mechanism. The distribution of particles and properties of composites are quantitatively evaluated. The adopted rheo process significantly improved the distribution of the reinforcement in the matrix with a strong interfacial bond between the two. A good combination of improved ultimate tensile strength (UTS) and tensile elongation (e) is obtained compared with composites produced by conventional processes.EPSR

    Exact eigenstate analysis of finite-frequency conductivity in graphene

    Full text link
    We employ the exact eigenstate basis formalism to study electrical conductivity in graphene, in the presence of short-range diagonal disorder and inter-valley scattering. We find that for disorder strength, WW \ge 5, the density of states is flat. We, then, make connection, using the MRG approach, with the work of Abrahams \textit{et al.} and find a very good agreement for disorder strength, WW = 5. For low disorder strength, WW = 2, we plot the energy-resolved current matrix elements squared for different locations of the Fermi energy from the band centre. We find that the states close to the band centre are more extended and falls of nearly as 1/El21/E_l^{2} as we move away from the band centre. Further studies of current matrix elements versus disorder strength suggests a cross-over from weakly localized to a very weakly localized system. We calculate conductivity using Kubo Greenwood formula and show that, for low disorder strength, conductivity is in a good qualitative agreement with the experiments, even for the on-site disorder. The intensity plots of the eigenstates also reveal clear signatures of puddle formation for very small carrier concentration. We also make comparison with square lattice and find that graphene is more easily localized when subject to disorder.Comment: 11 pages,15 figure

    Random field sampling for a simplified model of melt-blowing considering turbulent velocity fluctuations

    Full text link
    In melt-blowing very thin liquid fiber jets are spun due to high-velocity air streams. In literature there is a clear, unsolved discrepancy between the measured and computed jet attenuation. In this paper we will verify numerically that the turbulent velocity fluctuations causing a random aerodynamic drag on the fiber jets -- that has been neglected so far -- are the crucial effect to close this gap. For this purpose, we model the velocity fluctuations as vector Gaussian random fields on top of a k-epsilon turbulence description and develop an efficient sampling procedure. Taking advantage of the special covariance structure the effort of the sampling is linear in the discretization and makes the realization possible

    A genetic locus on chromosome 2q24 predicting peripheral neuropathy risk in type 2 diabetes: Results from the ACCORD and BARI 2D studies

    Get PDF
    Genetic factors have been postulated to be involved in the etiology of diabetic peripheral neuropathy (DPN), but their identity remains mostly unknown. The aim of this study was to conduct a systematic search for genetic variants influencing DPN risk using two wellcharacterized cohorts. A genome-wide association study (GWAS) testing 6.8 million single nucleotide polymorphisms was conducted among participants of the Action to Control Cardiovascular Risk in Diabetes (ACCORD) clinical trial. Included were 4,384 white case patients with type 2 diabetes (T2D) and prevalent or incident DPN (defined as a Michigan Neuropathy Screening Instrument clinical examination score >2.0) and 784 white control subjects with T2D and no evidence of DPN at baseline or during follow-up. Replication of significant loci was sought among white subjects with T2D (791 DPN-positive case subjects and 158 DPNnegative control subjects) from the Bypass Angioplasty Revascularization Investigation in Type 2 Diabetes (BARI 2D) trial. Association between significant variants and gene expression in peripheral nerves was evaluated in the Genotype-Tissue Expression (GTEx) database. A cluster of 28 SNPs on chromosome 2q24 reached GWAS significance (P < 5×10-8) in ACCORD. The minor allele of the lead SNP (rs13417783,minor allele frequency = 0.14) decreased DPN odds by 36%(odds ratio [OR] 0.64, 95% CI 0.55-0.74, P = 1.9×10-9). This effect was not influenced by ACCORD treatment assignments (P for interaction = 0.6) or mediated by an association with known DPN risk factors. This locus was successfully validated in BARI 2D (OR 0.57, 95%CI 0.42-0.80,P=9×10-4; summary P=7.9×10-12). In GTEx, the minor, protective allele at this locus was associated with higher tibial nerve expression of an adjacent gene (SCN2A) coding for human voltage-gated sodium channel NaV1.2 (P = 9×10-4). To conclude, we have identified and successfully validated a previously unknown locus with a powerful protective effect on the development of DPN in T2D. These results may provide novel insights into DPN pathogenesis and point to a potential target for novel interventions

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC

    High pTp_{T} non-photonic electron production in pp+pp collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We present the measurement of non-photonic electron production at high transverse momentum (pT>p_T > 2.5 GeV/cc) in pp + pp collisions at s\sqrt{s} = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons (e++e2\frac{e^++e^-}{2}) at 3 GeV/c<pT< c < p_T <~10 GeV/cc from bottom and charm meson decays to be dσ(Be)+(BDe)dyeye=0{d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0} = 4.0±0.5\pm0.5({\rm stat.})±1.1\pm1.1({\rm syst.}) nb and dσDedyeye=0{d\sigma_{D\to e} \over dy_e}|_{y_e=0} = 6.2±0.7\pm0.7({\rm stat.})±1.5\pm1.5({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure

    Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV

    Get PDF
    We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage [-1.3, 1.3]. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes.Comment: 6 pages, 3 figure
    corecore