35 research outputs found

    Premating behavioral tactics of Columbian ground squirrels

    Get PDF
    In polygynous and polygynandrous mating systems males possess a variety of behavioral tactics that increase their access to reproductive females. In addition to overt combat or defending resources that attract mates, males use premating tactics that provide them with subsequent opportunities to copulate with receptive females. For Columbian ground squirrels, Urocitellus columbianus, we report that co-occupation of a burrow system by a reproductive male and a female on the night before the female exhibits diurnal estrus is an example of such a tactic. Our hypothesis was that nocturnal underground association results in successful consortships and therefore constitutes a mating tactic that is complementary to other mating behaviors exhibited during a female's estrus. Under this hypothesis appropriate predictions are that: males co-occupying a burrow system with a female at night should mate first with that female; males co-occupying a burrow system with a female overnight should sire more of her offspring than her subsequent mates; and the reproductive success of males co-occupying a burrow system with females should be higher than the reproductive success of mates that do not. To test our predictions we used a combination of field observations on nocturnal underground consortships (NUCs) and microsatellite DNA analyses of paternity. Males copulated with females during NUCs, as evidenced by inseminations. These males sired more offspring than males that did not participate in NUCs. Males ≥3 years old participated in more NUCs than sexually mature 2-year-old males. Our results supported the hypothesis that entrance into NUCs with a female before she exhibits estrus was a premating tactic that increased male reproductive success when exhibited in concert with other mating tactics such as territorial defens

    Mating order and reproductive success in male Columbian ground squirrels (Urocitellus columbianus)

    Get PDF
    Multiple mating by females is common in many mammalian species, often resulting in mixed paternity litters. In such mating systems, mating order, male age, and male body mass frequently play an important role in determining male reproductive success. We tested for these effects on male reproductive success in Columbian ground squirrels (Urocitellus columbianus). The mating activity of estrous females was observed, and the occurrence of sperm precedence was tested using microsatellites to determine paternity in a total of 147 litters (434 offspring), including 110 litters (334 offspring) where the mating position of individual males was determined. Females mated with up to 8 males per litter, whereas paternity analyses revealed that only the first 5 males to mate actually sired offspring. The number of offspring sired significantly decreased with position in the mating sequence, showing a strong first male advantage. The extent of this advantage diminished with an increasing number of male mating partners, indicating that sperm competition plays an important role. A male's position in the females' mating sequences was not consistent within and across seasons, suggesting that individual males did not follow distinct reproductive strategies. Rather, males of intermediate age were more successful than young and old males, when corrected for age effects; heavier males were more likely to mate first. We conclude that males gain the largest part of their seasonal reproductive output from mating first with a female due to a pronounced first male advantage but gain considerable additional fitness from mating with additional, already mated female

    Effects of heat waves on telomere dynamics and parental brooding effort in nestlings of the zebra finch (Taeniopygia castanotis) transitioning from ectothermy to endothermy

    Get PDF
    Heat waves are predicted to be detrimental for organismal physiology with costs for survival that could be reflected in markers of biological state such as telomeres. Changes in early life telomere dynamics driven by thermal stress are of particular interest during the early post-natal stages of altricial birds because nestlings quickly shift from being ectothermic to endothermic after hatching. Telomeres of ectothermic and endothermic organisms respond differently to environmental temperature, but few investigations within species that transition from ectothermy to endothermy are available. Also, ambient temperature influences parental brooding behaviour, which will alter the temperature experienced by offspring and thereby, potentially, their telomeres. We exposed zebra finch nestlings to experimental heat waves and compared their telomere dynamics to that of a control group at 5, 12 and 80 days of age that encapsulate the transition from the ectothermic to the endothermic thermoregulatory stage; we also recorded parental brooding, offspring sex, mass, growth rates, brood size and hatch order. Nestling mass showed an inverse relationship with telomere length, and nestlings exposed to heat waves showed lower telomere attrition during their first 12 days of life (ectothermic stage) compared to controls. Additionally, parents of heated broods reduced the time they spent brooding offspring (at 5 days old) compared to controls. Our results indicate that the effect of heat waves on telomere dynamics likely varies depending on age and thermoregulatory stage of the offspring in combination with parental brooding behaviour during growth

    Parent-offspring conflict and the genetic trade-offs shaping parental investment

    Get PDF
    The genetic conflict between parents and their offspring is a cornerstone of kin selection theory and the gene-centred view of evolution, but whether it actually occurs in natural systems remains an open question. Conflict operates only if parenting is driven by genetic trade-offs between offspring performance and the parent's ability to raise additional offspring, and its expression critically depends on the shape of these trade-offs. Here we investigate the occurrence and nature of genetic conflict in an insect with maternal care, the earwig Forficula auricularia. Specifically, we test for a direct response to experimental selection on female future reproduction and correlated responses in current offspring survival, developmental rate and growth. The results demonstrate genetic trade-offs that differ in shape before and after hatching. Our study not only provides direct evidence for parent-offspring conflict but also highlights that conflict is not inevitable and critically depends on the genetic trade-offs shaping parental investment.Peer reviewe

    Maternal programming of offspring in relation to food availability in an insect (Forficula auricularia)

    No full text
    Maternal effects can induce adjustments in offspring phenotype to the environment experienced by the mother. Of particular interest is if mothers can programme their offspring to cope best under matching environmental conditions, but the evidence for such anticipatory maternal effects (AME) is limited. In this study, we manipulated experimentally the food availability experienced by mothers and their offspring in the European earwig (Forficula auricularia). Offspring produced by females that had access to high or low food quantities were cross-fostered to foster mothers experiencing matched or mismatched environments. Offspring experiencing food availability matching the one of their mothers had an increased survival to adulthood compared with offspring experiencing mismatched conditions. Females experiencing high food laid larger clutches. This clutch-size adjustment statistically explained the matching effect when offspring experienced high food, but not when experiencing low food conditions. There were no effects of matching on offspring growth and developmental rate. Overall, our study demonstrates that AME occurs in relation to food availability enhancing offspring survival to adulthood under matching food conditions

    Data from: Ectoparasites and fitness of female Columbian ground squirrels

    No full text
    Parasites play an important role in the evolution of host traits via natural selection, coevolution and sexually selected ornaments used in mate choice. These evolutionary scenarios assume fitness costs for hosts. To test this assumption, we conducted an ectoparasite removal experiment in free-living Columbian ground squirrels (Urocittelus columbianus) in four populations over three years. Adult females were randomly chosen to be either experimentally treated with anti-parasite treatments (spot-on solution and flea powder, N = 61) or a sham treatment (control, N = 44). We expected that experimental females would show better body condition, increased reproductive success and enhanced survival. Contrary to our expectations, body mass was not significantly different between treatments at mating, birth of litter or weaning of young. Further, neither number nor size of young at weaning differed significantly between the two treatments. Survival to the next spring for adult females and juveniles was not significantly different between experimental and control treatments. Finally, annual fitness was not affected by the treatments. We concluded that females and their offspring were able compensate for the presence of ectoparasites, suggesting little or no fitness costs of parasites for females in the different colonies and during the years of our experiments

    Multiple paternity does not depend on male genetic diversity

    Get PDF
    Polyandry is common in many species and it has been suggested that females engage in multiple mating to increase the genetic diversity of their offspring (genetic diversity hypothesis). Multiple paternity occurs in 30% of litters in wild populations of house mice, Mus musculus musculus, and multiple-sired litters are genetically more diverse than single-sired ones. Here, we aimed to test whether female house mice produce multiple-sired litters when they have the opportunity to produce genetically diverse litters. We assessed the rates of multiple paternity when females could choose to mate with two males that were genetically dissimilar to each other (i.e. nonsiblings and MHC dissimilar) compared with when females could choose to mate with two males that were genetically similar to each other (i.e. siblings and shared MHC alleles). Multiple mating may depend upon a female's own condition, and, therefore, we also tested whether inbred (from full-sibling matings) females were more likely to produce multiple-sired progeny than outbred controls. Overall we found that 29% of litters had multiple sires, but we found no evidence that females were more likely to produce multiple-sired litters when they had the opportunity to mate with genetically dissimilar males compared with controls, regardless of whether females were inbred or outbred. Thus, our findings do not support the idea that female mice increase multiple paternity when they have the opportunity to increase the genetic diversity of their offspring, as expected from the genetic diversity hypothesis
    corecore