73 research outputs found

    OCR Quality Affects Perceived Usefulness of Historical Newspaper Clippings. A User Study

    Get PDF
    Publisher Copyright: © 2022 Copyright for this paper by its authors.Effects of Optical Character Recognition (OCR) quality on historical information retrieval have so far been studied in data-oriented scenarios regarding the effectiveness of retrieval results. Such studies have either focused on the effects of artificially degraded OCR quality (see, e.g., [1-2]) or utilized test collections containing texts based on authentic low quality OCR data (see, e.g., [3]). In this paper the effects of OCR quality are studied in a user-oriented information retrieval setting. Thirty-two users evaluated subjectively query results of six topics each (out of 30 topics) based on pre-formulated queries using a simulated work task setting. To the best of our knowledge our simulated work task experiment is the first one showing empirically that users' subjective relevance assessments of retrieved documents are affected by a change in the quality of optically read text. Users of historical newspaper collections have so far commented effects of OCR'ed data quality mainly in impressionistic ways, and controlled user environments for studying effects of OCR quality on users' relevance assessments of the retrieval results have so far been missing. To remedy this The National Library of Finland (NLF) set up an experimental query environment for the contents of one Finnish historical newspaper, Uusi Suometar 1869-1918, to be able to compare users' evaluation of search results of two different OCR qualities for digitized newspaper articles. The query interface was able to present the same underlying document for the user based on two alternatives: either based on the lower OCR quality, or based on the higher OCR quality, and the choice was randomized. The users did not know about quality differences in the article texts they evaluated. The main result of the study is that improved optical character recognition quality affects perceived usefulness of historical newspaper articles significantly. The mean average evaluation score for the improved OCR results was 7.94% higher than the mean average evaluation score of the old OCR results.Peer reviewe

    Scene setting for the ESA hydroGNSS GNSS-Reflectometry scout mission

    Get PDF
    HydroGNSS is a mission concept selected by ESA as a Scout candidate, and consists of a 40 kg satellite that addresses land hydrological parameters using the technique of GNSS Reflectometry, a form of bistatic L-Band radar using satnav signals as the radar source. The four targeted essential climate variables (ECVs) are of established importance to our understanding of the climate evolution and human interaction, and comprise of soil moisture, inundation / wetlands, freeze /thaw (notably over permafrost) and above ground biomass. The technique of GNSS Reflectometry shows potential over all geophysical surfaces for low cost measurement of ocean winds, ocean roughness, soil moisture, flood & ice mapping, and other climate and operational parameters. SSTL developed and flew the SGR-ReSI GNSS remote sensing instrument on the 160 kg UK TechDemoSat-1 (TDS-1) in July 2014 and, with sponsorship from ESA, collected data until TDS-1’s drag-sail was deployed in May 2019. TDS-1 was a precursor for NASA’s CYGNSS mission which uses the SGR-ReSI on its 8-microsatellite constellation for sensing hurricanes. The datasets from TDS-1 have been released via the MERRByS website, and include ocean wind speed measurements and ice extent maps from National Oceanography Centre’s C-BRE inversion. At the same time, researchers recognised the benefits of GNSS reflectometry over land, including the unique capability to sense rivers under forest canopies to a high resolution. HydroGNSS has been proposed for the ESA Scout mission opportunity by a SSTL and a team of partners with a broad range of experience in GNSS technology, GNSS-Reflectometry modelling and applications, and Earth Observation from GNSS-R measurements. The instrument takes significant steps forward from previous GNSS-R experiments by including capability in dual polarisation, dual frequency and coherent reflected signal reception, that are expected to help separate out ECVs and improve measurement resolution. The satellite platform is the 40 kg SSTL-Micro, which has improved attitude determination and a high data link to support the collection of copious quantities scientific data with a short time delay. HydroGNSS builds upon the growing GNSS-R knowledge gained from UK-DMC, TDS-1, and ORORO / DoT-1, and is anticipated to generate a new research data set in GNSS Earth Observation, specifically targeting land and hydrological applications. State of the art satellites that target soil moisture such as ESA SMOS and NASA SMAP are highly valued by scientists and operational weather forecasters, but will be expensive to replace. As evidenced by TDS-1 and CYGNSS, HydroGNSS will be able to take GNSS-R measurements using GNSS signals as a radar source, reducing the size of the satellite platform required. The forward scatter L-band nature of the measurement means that they are complementary to other techniques, and HydroGNSS brings further new measurement types compared to TDS-1 and CYGNSS. The small size and low recurring cost of the HydroGNSS satellite design opens the door to a larger constellation that can further improve spatial and temporal global hydrological measurements to an unprecedented resolution, invaluable to the better understanding of our climate

    Proxy Indicators for Mapping the End of the Vegetation Active Period in Boreal Forests Inferred from Satellite-Observed Soil Freeze and ERA-Interim Reanalysis Air Temperature

    Get PDF
    Triggered by decreases in photoperiod and temperature, evergreen needle-leaved trees in the boreal region downregulate photosynthetic activity and enter dormancy in autumn. Accompanying changes in canopy structure and chlorophyll content are small and precede the cessation of photosynthetic activity. Low solar elevation and cloud cover during this period pose additional challenges for the use of optical satellite instruments. Alternatively, environmental variables that correlate with photosynthesis, such as soil freeze, can be detected from satellite microwave observations independent of weather and illumination conditions. We tested for the first time the usability of satellite-observed soil freeze from the Soil Moisture and Ocean Salinity (SMOS) instrument as a proxy indicator for the end of vegetation active period (VAPend) at six eddy covariance sites in Finland and Canada. The time when soil freeze commenced over the large SMOS pixel can be employed to estimate VAPend (R-2=0.84, RMSE=7.5days), defined as the time when the photosynthetic capacity of the forest drops below 10% of the growing season maximum. In comparison to satellite-based soil freeze timing, an air temperature-based proxy from ERA-Interim reanalysis data showed better performance (R-2=0.92, RMSE=5.2days). VAPend was mapped in the boreal forest zone in Finland and Canada from both indicators based on linear regression models.Peer reviewe

    Utilizing earth observations of soil freeze/thaw data and atmospheric concentrations to estimate cold season methane emissions in the northern high latitudes

    Get PDF
    The northern wetland methane emission estimates have large uncertainties. Inversion models are a qualified method to estimate the methane fluxes and emissions in northern latitudes but when atmospheric observations are sparse, the models are only as good as their a priori estimates. Thus, improving a priori estimates is a competent way to reduce uncertainties and enhance emission estimates in the sparsely sampled regions. Here, we use a novel way to integrate remote sensing soil freeze/thaw (F/T) status from SMOS satellite to better capture the seasonality of methane emissions in the northern high latitude. The SMOS F/T data provide daily information of soil freezing state in the northern latitudes, and in this study, the data is used to define the cold season in the high latitudes and, thus, improve our knowledge of the seasonal cycle of biospheric methane fluxes. The SMOS F/T data is implemented to LPX-Bern DYPTOP model estimates and the modified fluxes are used as a biospheric a priori in the inversion model CarbonTracker Europe-CH4. The implementation of the SMOS F/T soil state is shown to be beneficial in improving the inversion model’s cold season biospheric flux estimates. Our results show that cold season biospheric CH4 emissions in northern high latitudes are approximately 0.60 Tg lower than previously estimated, which corresponds to 17% reduction in the cold season biospheric emissions. This reduction is partly compensated by increased anthropogenic emissions in the same area (0.23 Tg), and the results also indicates that the anthropogenic emissions could have even larger contribution in cold season than estimated here.peer-reviewe

    Towards long-term records of rain-on-snow events across the Arctic from satellite data

    Get PDF
    Rain-on-snow (ROS) events occur across many regions of the terrestrial Arctic in mid-winter. Snowpack properties are changing, and in extreme cases ice layers form which affect wildlife, vegetation and soils beyond the duration of the event. Specifically, satellite microwave observations have been shown to provide insight into known events. Only Ku-band radar (scatterometer) has been applied so far across the entire Arctic. Data availability at this frequency is limited, however. The utility of other frequencies from passive and active systems needs to be explored to develop a concept for long-term monitoring. The latter are of specific interest as they can be potentially provided at higher spatial resolution. Radar records have been shown to capture the associated snow structure change based on time-series analyses. This approach is also applicable when data gaps exist and has capabilities to evaluate the impact severity of events. Active as well as passive microwave sensors can also detect wet snow at the timing of an ROS event if an acquisition is available. The wet snow retrieval methodology is, however, rather mature compared to the identification of snow structure change since ambiguous scattering behaviour needs consideration. C-band radar is of special interest due to good data availability including a range of nominal spatial resolutions (10 m–12.5 km). Scatterometer and SAR (synthetic aperture radar) data have therefore been investigated. The temperature dependence of C-band backscatter at VV (V – vertical) polarization observable down to −40 ◦C is identified as a major issue for ROS retrieval but can be addressed by a combination with a passive microwave wet snow indicator (demonstrated for Metop ASCAT – Advanced Scatterometer – and SMOS – Soil Moisture and Ocean Salinity). Results were compared to in situ observations (snowpit records, caribou migration data) and Ku-band products. Ice crusts were found in the snowpack after detected events (overall accuracy 82 %). The more crusts (events) there are, the higher the winter season backscatter increase at C-band will be. ROS events captured on the Yamal and Seward peninsulas have had severe impacts on reindeer and caribou, respectively, due to ice crust formation. SAR specifically from Sentinel-1 is promising regarding ice layer identification at better spatial details for all available polarizations. The fusion of multiple types of microwave satellite observations is suggested for the creation of a climate data record, but the consideration of performance differences due to spatial and temporal cover, as well as microwave frequency, is crucial. Retrieval is most robust in the tundra biome, where results are comparable between sensors. Records can be used to identify extremes and to apply the results for impact studies at regional scale

    Analysis of correlation and total power radiometer front-ends using noise waves

    Get PDF
    A complete and systematic noise analysis of radiometer front-ends, including both total power and correlation measurements, is presented. The procedure uses the concepts of noise waves and S-parameters, widely used in microwave systems design and takes into account full noise characterization of receivers including mismatch effects. The general formulation is compatible with known total power radiometer analysis and is specially appropriate in correlation radiometers for which the effect of nonideal components, such as input isolators, is analyzed. Along with numerical simulations, simple formulas are given to compute the measured visibility in nonideal conditions. The analysis is validated using experimental results consisting of correlation measurements of four receivers placed inside an anechoic chamber. Good agreement between theoretical predictions and experimental data is observed.Peer Reviewe

    Analysis of Correlation and Total Power Radiometer Front-Ends Using Noise Waves

    Get PDF
    A complete and systematic noise analysis of radiometer front-ends, including both total power and correlation measurements, is presented. The procedure uses the concepts of noise waves and S-parameters, widely used in microwave systems design and takes into account full noise characterization of receivers including mismatch effects. The general formulation is compatible with known total power radiometer analysis and is specially appropriate in correlation radiometers for which the effect of nonideal components, such as input isolators, is analyzed. Along with numerical simulations, simple formulas are given to compute the measured visibility in nonideal conditions. The analysis is validated using experimental results consisting of correlation measurements of four receivers placed inside an anechoic chamber. Good agreement between theoretical predictions and experimental data is observed.Peer Reviewe

    An Introduction to the HydroGNSS GNSS Reflectometry Remote Sensing Mission

    Get PDF
    HydroGNSS (Hydrology using Global Navigation Satellite System reflections) has been selected as the second European Space Agency (ESA) Scout earth observation mission to demonstrate the capability of small satellites to deliver science. This article summarizes the case for HydroGNSS as developed during its system consolidation study. HydroGNSS is a high-value dual small satellite mission, which will prove new concepts and offer timely climate observations that supplement and complement the existing observations and are high in ESAs earth observation scientific priorities. The mission delivers the observations of four hydrological essential climate variables as defined by the global climate observing system using the new technique of GNSS reflectometry. These will cover the world's land mass to 25 km resolution, with a 15-day revisit. The variables are soil moisture, inundation or wetlands, freeze/thaw state, and above-ground biomass

    Retrieving landscape freeze/thaw state fromSoil Moisture Active Passive (SMAP) radar and radiometer measurements

    Get PDF
    Over one-third of the global land area undergoes a seasonal transition between predominantly frozen and non-frozen conditions each year, with the land surface freeze/thaw (FT) state a significant control on hydrological and biospheric processes over northern land areas and at high elevations. The NASA Soil Moisture Active Passive (SMAP) mission produced a daily landscape FT product at 3-km spatial resolution derived from ascending and descending orbits of SMAP high-resolution L-band (1.4 GHz) radar measurements. Following the failure of the SMAP radar in July 2015, coarser (36-km) footprint SMAP radiometer inputs were used to develop an alternative daily passive microwave freeze/thaw product. In this study, in situ observations are used to examine differences in the sensitivity of the 3-km radar versus the 36-km radiometer measurements to the landscape freeze/thaw state during the period of overlapping instrument operation. Assessment of the retrievals at high-latitude SMAP core validation sites showed excellent agreement with in situ flags, exceeding the 80% SMAP mission accuracy requirement. Similar performance was found for the radar and radiometer products using both air temperature and soil temperature derived FT reference flags. There was a tendency for SMAP thaw retrievals to lead the surface flags due to the influence of wet snow cover conditions on both the radar and radiometer signal. Comparison with other satellite derived FT products showed those derived from passive measurements (SMAP radiometer; Aquarius radiometer; Advanced Microwave Scanning Radiometer - 2) retrieved less frozen area than the active products (SMAP radar; Aquarius radar)

    Scouting for Climate Variable with Small Satellites

    Get PDF
    HydroGNSS is a small satellite mission under the new ESA Scout programme tapping into NewSpace, within ESA’s FutureEO programme. The mission will use an innovative GNSS-Reflectometry instrument to collect parameters related to the Essential Climate Variables (ECVs): soil moisture, inundation, freeze/thaw, biomass, ocean wind speed and sea ice extent. GNSS-Reflectometry is a type of bistatic radar utilizing abundant GNSS signals as signals of opportunity, empowering small satellites to provide measurement quality associated with larger satellites. The HydroGNSS instrument introduces novel measurements compared to its predecessors on UKSA TechDemoSat-1 and NASA CYGNSS missions. These include: the acquisition of Galileo(E1) reflections, and firsts such as dual- polarization, complex ‘coherent channel’ (amplitude/phase) and second frequency (L5/E5a) acquisitions. These measurements enable HydroGNSS to innovate the L2 products, e.g. improving the ground resolution and soil moisture measurement, as dual-polarized reflections allow the discrimination of vegetation effects from soil moisture. HydroGNSS will: ● Complement and potentially gap fill other missions sensing soil moisture e.g. ESA’s SMOS and NASA’s SMAP missions. ● Complement ESA’s Biomass mission addressing coverage restrictions over Europe, North and Central America. ● Expand GNSS-Reflectometry techniques. ● Lay the foundations for a future constellation capable of offering continuity in high spatial-temporal resolution observations of the Earth’s weather and climate
    corecore