35 research outputs found

    Parsimony and Model-Based Analyses of Indels in Avian Nuclear Genes Reveal Congruent and Incongruent Phylogenetic Signals

    Get PDF
    Insertion/deletion (indel) mutations, which are represented by gaps in multiple sequence alignments, have been used to examine phylogenetic hypotheses for some time. However, most analyses combine gap data with the nucleotide sequences in which they are embedded, probably because most phylogenetic datasets include few gap characters. Here, we report analyses of 12,030 gap characters from an alignment of avian nuclear genes using maximum parsimony (MP) and a simple maximum likelihood (ML) framework. Both trees were similar, and they exhibited almost all of the strongly supported relationships in the nucleotide tree, although neither gap tree supported many relationships that have proven difficult to recover in previous studies. Moreover, independent lines of evidence typically corroborated the nucleotide topology instead of the gap topology when they disagreed, although the number of conflicting nodes with high bootstrap support was limited. Filtering to remove short indels did not substantially reduce homoplasy or reduce conflict. Combined analyses of nucleotides and gaps resulted in the nucleotide topology, but with increased support, suggesting that gap data may prove most useful when analyzed in combination with nucleotide substitutions

    Movement ecology and sex are linked to barn owl microbial community composition.

    Get PDF
    The behavioural ecology of host species is likely to affect their microbial communities, because host sex, diet, physiology, and movement behaviour could all potentially influence their microbiota. We studied a wild population of barn owls (Tyto alba) and collected data on their microbiota, movement, diet, size, coloration, and reproduction. The composition of bacterial species differed by the sex of the host and female owls had more diverse bacterial communities than their male counterparts. The abundance of two families of bacteria, Actinomycetaceae and Lactobacillaceae, also varied between the sexes, potentially as a result of sex differences in hormones and immunological function, as has previously been found with Lactobacillaceae in the microbiota of mice. Male and female owls did not differ in the prey they brought to the nest, which suggests that dietary differences are unlikely to underlie the differences in their microbiota. The movement behaviour of the owls was associated with the host microbiota in both males and females because owls that moved further from their nest each day had more diverse bacterial communities than owls that stayed closer to their nests. This novel result suggests that the movement ecology of hosts can impact their microbiota, potentially on the basis of their differential encounters with new bacterial species as the hosts move and forage across the landscape. Overall, we found that many aspects of the microbial community are correlated with the behavioural ecology of the host and that data on the microbiota can aid in generating new hypotheses about host behaviour

    Tracing the colonization history of the Indian Ocean scops-owls (Strigiformes: Otus) with further insight into the spatio-temporal origin of the Malagasy avifauna

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The island of Madagascar and surrounding volcanic and coralline islands are considered to form a biodiversity hotspot with large numbers of unique taxa. The origin of this endemic fauna can be explained by two different factors: vicariance or over-water-dispersal. Deciphering which factor explains the current distributional pattern of a given taxonomic group requires robust phylogenies as well as estimates of divergence times. The lineage of Indian Ocean scops-owls (<it>Otus</it>: Strigidae) includes six or seven species that are endemic to Madagascar and portions of the Comoros and Seychelles archipelagos; little is known about the species limits, biogeographic affinities and relationships to each other. In the present study, using DNA sequence data gathered from six loci, we examine the biogeographic history of the Indian Ocean scops-owls. We also compare the pattern and timing of colonization of the Indian Ocean islands by scops-owls with divergence times already proposed for other bird taxa.</p> <p>Results</p> <p>Our analyses revealed that Indian Ocean islands scops-owls do not form a monophyletic assemblage: the Seychelles <it>Otus insularis </it>is genetically closer to the South-East Asian endemic <it>O. sunia </it>than to species from the Comoros and Madagascar. The Pemba Scops-owls <it>O. pembaensis</it>, often considered closely related to, if not conspecific with <it>O. rutilus </it>of Madagascar, is instead closely related to the African mainland <it>O. senegalensis</it>. Relationships among the Indian Ocean taxa from the Comoros and Madagascar are unresolved, despite the analysis of over 4000 bp, suggesting a diversification burst after the initial colonization event. We also highlight one case of putative back-colonization to the Asian mainland from an island ancestor (<it>O. sunia</it>). Our divergence date estimates, using a Bayesian relaxed clock method, suggest that all these events occurred during the last 3.6 myr; albeit colonization of the Indian Ocean islands were not synchronous, <it>O. pembaensis </it>diverged from <it>O. senegalensis </it>about 1.7 mya while species from Madagascar and the Comoro diverged from their continental sister-group about 3.6 mya. We highlight that our estimates coincide with estimates of diversification from other bird lineages.</p> <p>Conclusion</p> <p>Our analyses revealed the occurrence of multiple synchronous colonization events of the Indian Ocean islands by scops-owls, at a time when faunistic exchanges involving Madagascar was common as a result of lowered sea-level that would have allowed the formation of stepping-stone islands. Patterns of diversification that emerged from the scops-owls data are: 1) a star-like pattern concerning the order of colonization of the Indian Ocean islands and 2) the high genetic distinctiveness among all Indian Ocean taxa, reinforcing their recognition as distinct species.</p

    Diversification across an altitudinal gradient in the Tiny Greenbul (Phyllastrephus debilis) from the Eastern Arc Mountains of Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Eastern Arc Mountains of Africa have become one of the focal systems with which to explore the patterns and mechanisms of diversification among montane species and populations. One unresolved question is the extent to which populations inhabiting montane forest interact with those of adjacent lowland forest abutting the coast of eastern Africa. The Tiny Greenbul (<it>Phyllastephus debilis</it>) represents the only described bird species within the Eastern Arc/coastal forest mosaic, which is polytypic across an altitudinal gradient: the subspecies <it>albigula </it>(green head) is distributed in the montane Usambara and Nguru Mountains whereas the subspecies <it>rabai </it>(grey head) is found in Tanzanian lowland and foothill forest. Using a combination of morphological and genetic data, we aim to establish if the pattern of morphological differentiation in the Tiny Greenbul (<it>Phyllastrephus debilis</it>) is the result of disruptive selection along an altitudinal gradient or a consequence of secondary contact following population expansion of two differentiated lineages.</p> <p>Results</p> <p>We found significant biometric differences between the lowland (<it>rabai</it>) and montane (<it>albigula</it>) populations in Tanzania. The differences in shape are coupled with discrete differences in the coloration of the underparts. Using multi-locus data gathered from 124 individuals, we show that lowland and montane birds form two distinct genetic lineages. The divergence between the two forms occurred between 2.4 and 3.1 Myrs ago.</p> <p>Our coalescent analyses suggest that limited gene flow, mostly from the subspecies <it>rabai </it>to <it>albigula</it>, is taking place at three mid-altitude localities, where lowland and montane rainforest directly abut. The extent of this introgression appears to be limited and is likely a consequence of the recent expansion of <it>rabai </it>further inland.</p> <p>Conclusion</p> <p>The clear altitudinal segregation in morphology found within the Tiny Greenbul is the result of secondary contact of two highly differentiated lineages rather than disruptive selection in plumage pattern across an altitudinal gradient. Based on our results, we recommend <it>albigula </it>be elevated to species rank.</p

    Homoplastic microinversions and the avian tree of life

    Get PDF
    Background: Microinversions are cytologically undetectable inversions of DNA sequences that accumulate slowly in genomes. Like many other rare genomic changes (RGCs), microinversions are thought to be virtually homoplasyfree evolutionary characters, suggesting that they may be very useful for difficult phylogenetic problems such as the avian tree of life. However, few detailed surveys of these genomic rearrangements have been conducted, making it difficult to assess this hypothesis or understand the impact of microinversions upon genome evolution. Results: We surveyed non-coding sequence data from a recent avian phylogenetic study and found substantially more microinversions than expected based upon prior information about vertebrate inversion rates, although this is likely due to underestimation of these rates in previous studies. Most microinversions were lineage-specific or united well-accepted groups. However, some homoplastic microinversions were evident among the informative characters. Hemiplasy, which reflects differences between gene trees and the species tree, did not explain the observed homoplasy. Two specific loci were microinversion hotspots, with high numbers of inversions that included both the homoplastic as well as some overlapping microinversions. Neither stem-loop structures nor detectable sequence motifs were associated with microinversions in the hotspots. Conclusions: Microinversions can provide valuable phylogenetic information, although power analysis indicate

    Book ReviewThe Speciation and Biogeography of BirdsBy Ian Newton (2003)

    No full text
    Academic Press, London, Linacre House, Jordan Hill, Oxford OX2 8DP, UK, e-mail [email protected] pages, hardcoverISBN 012517375X, price £49.95Ostrich 2006, 77(1&2): 116–11
    corecore