250 research outputs found

    Nucleic Acid Lateral Flow Immunoassay for the Detection of Pathogenic Bacteria from Food

    Get PDF
    Nucleic acid lateral flow immunoassay (NALFIA) is a method combining molecular biological principle of detection with immunochemical principle of visualisation. Following isolation of DNA from the sample, a duplex PCR with two primer sets, of which one was labelled with biotin and the other with digoxigenin or fluorescein, respectively, was performed. The PCR solution and carbon particles conjugated with avidin are directly added to the nitrocellulose membrane with two test lines of immobilised antibodies specific for digoxigenin and fluorescein. The appearance of a black line indicates the presence of specific amplicon. We would like to present the NALFIA for the simultaneous detection of L. monocytogenes in particular and the genus Listeria in general, in food. Bacteria from the genus Listeria frequently contaminate a large variety of foods. Occurrence of Listeria strains in food may indicate errors in good hygienic and manufacturing practice, only L. monocytogenes is a significant human and animal pathogen responsible for the serious illness listeriosis. Conventional microbiological methods for L. monocytogenes detection are laborious and take several days to achieve a confirmed identification

    Dynamics of the Tippe Top via Routhian Reduction

    Full text link
    We consider a tippe top modeled as an eccentric sphere, spinning on a horizontal table and subject to a sliding friction. Ignoring translational effects, we show that the system is reducible using a Routhian reduction technique. The reduced system is a two dimensional system of second order differential equations, that allows an elegant and compact way to retrieve the classification of tippe tops in six groups as proposed in [1] according to the existence and stability type of the steady states.Comment: 16 pages, 7 figures, added reference. Typos corrected and a forgotten term in de linearized system is adde

    Supersymmetry and Integrability in Planar Mechanical Systems

    Full text link
    We present an N=2-supersymmetric mechanical system whose bosonic sector, with two degrees of freedom, stems from the reduction of an SU(2) Yang-Mills theory with the assumption of spatially homogeneous field configurations and a particular ansatz imposed on the gauge potentials in the dimensional reduction procedure. The Painleve test is adopted to discuss integrability and we focus on the role of supersymmetry and parity invariance in two space dimensions for the attainment of integrable or chaotic models. Our conclusion is that the relationships among the parameters imposed by supersymmetry seem to drastically reduce the number of possibilities for integrable interaction potentials of the mechanical system under consideration.Comment: 20 pages, 3 figure

    Atomic X-ray Spectroscopy of Accreting Black Holes

    Full text link
    Current astrophysical research suggests that the most persistently luminous objects in the Universe are powered by the flow of matter through accretion disks onto black holes. Accretion disk systems are observed to emit copious radiation across the electromagnetic spectrum, each energy band providing access to rather distinct regimes of physical conditions and geometric scale. X-ray emission probes the innermost regions of the accretion disk, where relativistic effects prevail. While this has been known for decades, it also has been acknowledged that inferring physical conditions in the relativistic regime from the behavior of the X-ray continuum is problematic and not satisfactorily constraining. With the discovery in the 1990s of iron X-ray lines bearing signatures of relativistic distortion came the hope that such emission would more firmly constrain models of disk accretion near black holes, as well as provide observational criteria by which to test general relativity in the strong field limit. Here we provide an introduction to this phenomenon. While the presentation is intended to be primarily tutorial in nature, we aim also to acquaint the reader with trends in current research. To achieve these ends, we present the basic applications of general relativity that pertain to X-ray spectroscopic observations of black hole accretion disk systems, focusing on the Schwarzschild and Kerr solutions to the Einstein field equations. To this we add treatments of the fundamental concepts associated with the theoretical and modeling aspects of accretion disks, as well as relevant topics from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian Journal of Physics, in pres

    A large ungated TPC with GEM amplification

    Get PDF
    A Time Projection Chamber (TPC) is an ideal device for the detection of charged particle tracks in a large volume covering a solid angle of almost . The high density of hits on a given particle track facilitates the task of pattern recognition in a high-occupancy environment and in addition provides particle identification by measuring the specific energy loss for each track. For these reasons, TPCs with Multiwire Proportional Chamber (MWPC) amplification have been and are widely used in experiments recording heavy-ion collisions. A significant drawback, however, is the large dead time of the order of 1 ms per event generated by the use of a gating grid, which is mandatory to prevent ions created in the amplification region from drifting back into the drift volume, where they would severely distort the drift path of subsequent tracks. For experiments with higher event rates this concept of a conventional TPC operating with a triggered gating grid can therefore not be applied without a significant loss of data. A continuous readout of the signals is the more appropriate way of operation. This, however, constitutes a change of paradigm with considerable challenges to be met concerning the amplification region, the design and bandwidth of the readout electronics, and the data handling. A mandatory prerequisite for such an operation is a sufficiently good suppression of the ion backflow from the avalanche region, which otherwise limits the tracking and particle identification capabilities of such a detector. Gas Electron Multipliers (GEM) are a promising candidate to combine excellent spatial resolution with an intrinsic suppression of ions. In this paper we describe the design, construction and the commissioning of a large TPC with GEM amplification and without gating grid (GEM-TPC). The design requirements have driven innovations in the construction of a light-weight field-cage, a supporting media flange, the GEM amplification and the readout system, which are presented in this paper. We further describe the support infrastructure such as gas, cooling and slow control. Finally, we report on the operation of the GEM-TPC in the FOPI experiment, and describe the calibration procedures which are applied to achieve the design performance of the device.Peer reviewe

    Star Formation and Dynamics in the Galactic Centre

    Full text link
    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A., 'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201

    Gesundheit und LeistungsfĂ€higkeit von MilchkĂŒhen im ökologischen Landbau interdisziplinĂ€r betrachtet – eine (Interventions-) Studie zu Stoffwechselstörungen und Eutererkrankungen unter BerĂŒcksichtigung von Grundfuttererzeugung, FĂŒtterungsmanagement und Tierhaltung

    Get PDF
    Im Mittelpunkt des Projektes stand die Stoffwechsel- und Eutergesundheit von ökologisch gehaltenen MilchkĂŒhen im prĂ€- und peripartalen Zeitraum sowie in den ersten 100 Laktationstagen und deren Beeinflussung durch die Futter- und NĂ€hrstoffversorgung und die Haltungsumwelt im umfassenden Sinn. In einer bundesweiten Feldstudie auf 106 ökologisch wirtschaftenden Milchviehbetrieben erfolgten Erhebungen mit dem Ziel einer Risikomodellierung zu Stoffwechsel- und Eutererkrankungen. Vor diesem Hintergrund wurden die Produktionssysteme von der Pflanzenzusammensetzung im GrĂŒnland und im Ackerfutter ĂŒber die Grobfutterproduktion, FutterqualitĂ€t und Rationsgestaltung, Haltungsumwelt bis hin zur Tiergesundheit und MilchqualitĂ€t analysiert, um hier einzelbetriebliche RisikoeinschĂ€tzungen vorzunehmen, Optimierungspotenziale aufzuzeigen und Handlungsempfehlungen abzuleiten, die anschließend betriebsindividuell implementiert wurden. Die EffektivitĂ€t des so geschaffenen prĂ€ventiv orientierten Tiergesundheitsmanagements wurde anhand der Entwicklung ausgewĂ€hlter Kennzahlen der Euter- und Stoffwechselgesundheit geprĂŒft. Es konnte gezeigt werden, dass sich mit dieser Vorgehensweise auch unter Praxisbedingungen die Tiergesundheitssituation signifikant verbes-sern lĂ€sst. Die Feldstudie wurde mit experimentellen Untersuchungen ergĂ€nzt, die sich speziellen Fragen der Analyse von nXP in Grasprodukten, des Kraftfuttereinsatzes, der Wahl der geeigneten Rasse, dem Infektionsgeschehen, der Nutzung von Haltungstechniken im FĂŒtterungsmanagement und der Verbesserung der Grasnarbe widmeten. Die im Projekt generierten, aufgrund ihrer Ableitung aus der Praxis widerspruchsarmen Erkenntnisse wurden ĂŒber vielfĂ€ltige Formen des Wissenstransfers an die Akteure in der Ökologischen Milchviehhaltung vermittelt. Ein Merkblatt zur Euter- und Stoffwechselgesundheit bei BiomilchkĂŒhen und ein modular aufgebautes Wissenstransferkonzept wurden erarbeitet, um die Projektergebnisse nachhaltig nutzen zu können

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
    • 

    corecore