125 research outputs found

    Adaptation and diversity along an altitudinal gradient in Ethiopian barley (Hordeum vulgare L.) landraces revealed by molecular analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Among the cereal crops, barley is the species with the greatest adaptability to a wide range of environments. To determine the level and structure of genetic diversity in barley (<it>Hordeum vulgare </it>L.) landraces from the central highlands of Ethiopia, we have examined the molecular variation at seven nuclear microsatellite loci.</p> <p>Results</p> <p>A total of 106 landrace populations were sampled in the two growing seasons (<it>Meher </it>and <it>Belg</it>; the long and short rainy seasons, respectively), across three districts (Ankober, Mojanawadera and Tarmaber), and within each district along an altitudinal gradient (from 1,798 to 3,324 m a.s.l). Overall, although significant, the divergence (e.g. F<sub>ST</sub>) is very low between seasons and geographical districts, while it is high between different classes of altitude. Selection for adaptation to different altitudes appears to be the main factor that has determined the observed clinal variation, along with population-size effects.</p> <p>Conclusions</p> <p>Our data show that barley landraces from Ethiopia are constituted by highly variable local populations (farmer's fields) that have large within-population diversity. These landraces are also shown to be locally adapted, with the major driving force that has shaped their population structure being consistent with selection for adaptation along an altitudinal gradient. Overall, our study highlights the potential of such landraces as a source of useful alleles. Furthermore, these landraces also represent an ideal system to study the processes of adaptation and for the identification of genes and genomic regions that have adaptive roles in crop species.</p

    Mutational biases and selective forces shaping the structure of <i>Arabidopsis</i> genes

    Get PDF
    Recently features of gene expression profiles have been associated with structural parameters of gene sequences in organisms representing a diverse set of taxa. The emerging picture indicates that natural selection, mediated by gene expression profiles, has a significant role in determining genic structures. However the current situation is less clear in plants as the available data indicates that the effect of natural selection mediated by gene expression is very weak. Moreover, the direction of the patterns in plants appears to contradict those observed in animal genomes. In the present work we analized expression data for &gt;18000 Arabidopsis genes retrieved from public datasets obtained with different technologies (MPSS and high density chip arrays) and compared them with gene parameters. Our results show that the impact of natural selection mediated by expression on genes sequences is significant and distinguishable from the effects of regional mutational biases. In addition, we provide evidence that the level and the breadth of gene expression are related in opposite ways to many structural parameters of gene sequences. Higher levels of expression abundance are associated with smaller transcripts, consistent with the need to reduce costs of both transcription and translation. Expression breadth, however, shows a contrasting pattern, i.e. longer genes have higher breadth of expression, possibly to ensure those structural features associated with gene plasticity. Based on these results, we propose that the specific balance between these two selective forces play a significant role in shaping the structure of Arabidopsis genes

    Molecular differentiation of commercial varieties and feral populations of oilseed rape (Brassica napus L.)

    Get PDF
    Background For assessing the risk of escape of transgenes from cultivation, the persistence of feral populations of crop plants is an important aspect. Feral populations of oilseed rape, Brassica napus, are well known, but only scarce information is available on their population dynamics, particularly in Central Europe. To investigate genetic diversity, origin and persistence of feral oilseed rape in Austria, we compared variation at nine polymorphic microsatellite loci in eight feral populations with 19 commercial varieties. Results Overall, commercial varieties and feral populations showed a similar pattern of genetic variation and a similar level of observed heterozygosity. The two groups, however, shared less than 50% of the alleles and no multilocus genotype. A significant among-group (commercial varieties versus feral populations) component of genetic variation was observed (AMOVA: FCT = 0.132). Pairwise comparisons between varieties and feral populations showed moderate to very high genetic differentiation (FST = 0.209 - 0.900). The software STRUCTURE also demonstrated a clear separation between commercial varieties and feral samples: out of 17 identified genetic clusters, only one comprised plants from both a commercial variety and feral sites. Conclusions The results suggest that feral oilseed rape is able to maintain persistent populations. The feral populations may have derived from older cultivars that were not included in our analyses or perhaps have already hybridised with related crops or wild relatives. Feral populations therefore have to be considered in ecological risk assessment and future coexistence measures as a potential hybridisation partner of transgenic oilseed rape

    Tagging the signatures of domestication in common bean (<i>Phaseolus vulgaris</i>) by means of pooled DNA samples

    Get PDF
    Background and Aims: The main aim of this study was to use an amplified fragment length polymorphism (AFLP)-based, large-scale screening of the whole genome of Phaseolus vulgaris to determine the effects of selection on the structure of the genetic diversity in wild and domesticated populations. Methods: Using pooled DNA samples, seven each of wild and domesticated populations of P. vulgaris were studied using 2506 AFLP markers (on average, one every 250 kb). About 10 % of the markers were also analysed on individual genotypes and were used to infer allelic frequencies empirically from bulk data. In both data sets, tests were made to determine the departure from neutral expectation for each marker using an FST-based method. Key Results: The most important outcome is that a large fraction of the genome of the common bean (16 %; P &lt;0·01) appears to have been subjected to effects of selection during domestication. Markers obtained in individual genotypes were also mapped and classified according to their proximities to known genes and quantitative trait loci (QTLs) of the domestication syndrome. Most of the markers that were found to be potentially under the effects of selection were located in the proximity of previously mapped genes and QTLs related to the domestication syndrome. Conclusions: Overall, the results indicate that in P. vulgaris a large portion of the genome appears to have been subjected to the effects of selection, probably because of linkage to the loci selected during domestication. As most of the markers that are under the effects of selection are linked to known loci related to the domestication syndrome, it is concluded that population genomics approaches are very efficient in detecting QTLs. A method based on bulk DNA samples is presented that is effective in pre-screening for a large number of markers to determine selection signatures

    Adaptation and diversity along an altitudinal gradient in Ethiopian barley (<i>Hordeum vulgare</i> L.) landraces revealed by molecular analysis

    Get PDF
    Background. Among the cereal crops, barley is the species with the greatest adaptability to a wide range of environments. To determine the level and structure of genetic diversity in barley (Hordeum vulgare L.) landraces from the central highlands of Ethiopia, we have examined the molecular variation at seven nuclear microsatellite loci. Results. A total of 106 landrace populations were sampled in the two growing seasons (Meher and Belg; the long and short rainy seasons, respectively), across three districts (Ankober, Mojanawadera and Tarmaber), and within each district along an altitudinal gradient (from 1,798 to 3,324 m a.s.l). Overall, although significant, the divergence (e.g. FST) is very low between seasons and geographical districts, while it is high between different classes of altitude. Selection for adaptation to different altitudes appears to be the main factor that has determined the observed clinal variation, along with population-size effects. Conclusions. Our data show that barley landraces from Ethiopia are constituted by highly variable local populations (farmer's fields) that have large within-population diversity. These landraces are also shown to be locally adapted, with the major driving force that has shaped their population structure being consistent with selection for adaptation along an altitudinal gradient. Overall, our study highlights the potential of such landraces as a source of useful alleles. Furthermore, these landraces also represent an ideal system to study the processes of adaptation and for the identification of genes and genomic regions that have adaptive roles in crop species

    Immunosenescence and vaccine efficacy revealed by immunometabolic analysis of SARS-CoV-2-specific cells in multiple sclerosis patients

    Get PDF
    Disease-modifying therapies (DMT) administered to patients with multiple sclerosis (MS) can influence immune responses to SARS-CoV-2 and vaccine efficacy. However, data on the detailed phenotypic, functional and metabolic characteristics of antigen (Ag)-specific cells following the third dose of mRNA vaccine remain scarce. Here, using flow cytometry and 45-parameter mass cytometry, we broadly investigate the phenotype, function and the single-cell metabolic profile of SARS-CoV-2-specific T and B cells up to 8 months after the third dose of mRNA vaccine in a cohort of 94 patients with MS treated with different DMT, including cladribine, dimethyl fumarate, fingolimod, interferon, natalizumab, teriflunomide, rituximab or ocrelizumab. Almost all patients display functional immune response to SARS-CoV-2. Different metabolic profiles characterize antigen-specific-T and -B cell response in fingolimod- and natalizumab-treated patients, whose immune response differs from all the other MS treatments.Disease-modifying therapies (DMT) administered to patients with multiple sclerosis (MS) can influence immune responses to SARS-CoV-2 and vaccine efficacy. However, data on the detailed phenotypic, functional and metabolic characteristics of antigen (Ag)-specific cells following the third dose of mRNA vaccine remain scarce. Here, using flow cytometry and 45-parameter mass cytometry, we broadly investigate the phenotype, function and the single-cell metabolic profile of SARS-CoV-2-specific T and B cells up to 8 months after the third dose of mRNA vaccine in a cohort of 94 patients with MS treated with different DMT, including cladribine, dimethyl fumarate, fingolimod, interferon, natalizumab, teriflunomide, rituximab or ocrelizumab. Almost all patients display functional immune response to SARS-CoV-2. Different metabolic profiles characterize antigen-specific-T and -B cell response in fingolimod- and natalizumab-treated patients, whose immune response differs from all the other MS treatments

    Genetic variability, chemotype distribution, and aggressiveness of Fusarium culmorum on durum wheat in Tunisia

    Get PDF
    Fusarium culmorum is the most commonly reported root rot pathogen in Tunisian durum wheat. Isolates of the pathogen from four durum wheat growing areas in the north of Tunisia were analyzed for their chemotypes. Two chemotypes were detected at unequal abundance (96% of 3-ADON and 4% of NIV). Distribution of a SNP mutation located at the position 34 bp after the first exon of the EF-1α partial sequence was analysed, to verify whether the haplotype was specifically associated to Fusarium root rot. A and T haplotypes were homogeneously distributed in three different Tunisian regions (Mateur, Beja and Bousalem) but not for the region of Bizerte, from which greatest number of A haplotype strains were detected. The isolates were tested for their virulence under glasshouse conditions, and a mean of 91% of crown and root infection was observed. Chemotype influenced virulence, but there was no significant influence of the geographical origin or haplotype on virulence. The distribution of three inter simple sequence repeats (ISSR) was examined, to better understand the structure of F. culmorum populations in Tunisia. A total of 27 fragments were obtained with eight polymorphic bands. Cluster analysis showed a high level of similarity between isolates. Analysis of molecular variance confirmed that there was little genetic differentiation among F. culmorum strains from different locations

    Mutational Biases and Selective Forces Shaping the Structure of Arabidopsis Genes

    Get PDF
    Recently features of gene expression profiles have been associated with structural parameters of gene sequences in organisms representing a diverse set of taxa. The emerging picture indicates that natural selection, mediated by gene expression profiles, has a significant role in determining genic structures. However the current situation is less clear in plants as the available data indicates that the effect of natural selection mediated by gene expression is very weak. Moreover, the direction of the patterns in plants appears to contradict those observed in animal genomes. In the present work we analized expression data for >18000 Arabidopsis genes retrieved from public datasets obtained with different technologies (MPSS and high density chip arrays) and compared them with gene parameters. Our results show that the impact of natural selection mediated by expression on genes sequences is significant and distinguishable from the effects of regional mutational biases. In addition, we provide evidence that the level and the breadth of gene expression are related in opposite ways to many structural parameters of gene sequences. Higher levels of expression abundance are associated with smaller transcripts, consistent with the need to reduce costs of both transcription and translation. Expression breadth, however, shows a contrasting pattern, i.e. longer genes have higher breadth of expression, possibly to ensure those structural features associated with gene plasticity. Based on these results, we propose that the specific balance between these two selective forces play a significant role in shaping the structure of Arabidopsis genes

    A survey for variable young stars with small telescopes: II - mapping a protoplanetary disc with stable structures at 0.15 au

    Get PDF
    The HOYS citizen science project conducts long term, multifilter, high cadence monitoring of large YSO samples with a wide variety of professional and amateur telescopes. We present the analysis of the light curve of V1490 Cyg in the Pelican Nebula. We show that colour terms in the diverse photometric data can be calibrated out to achieve a median photometric accuracy of 0.02 mag in broadband filters, allowing detailed investigations into a variety of variability amplitudes over timescales from hours to several years. Using Gaia DR2 we estimate the distance to the Pelican Nebula to be 870 +70 −55 pc. V1490 Cyg is a quasi-periodic dipper with a period of 31.447 ± 0.011 d. The obscuring dust has homogeneous properties, and grains larger than those typical in the ISM. Larger variability on short timescales is observed in U and Rc−Hα, with U-amplitudes reaching 3 mag on timescales of hours, indicating the source is accreting. The Hα equivalent width and NIR/MIR colours place V1490 Cyg between CTTS/WTTS and transition disk objects. The material responsible for the dipping is located in a warped inner disk, about 0.15 AU from the star. This mass reservoir can be filled and emptied on time scales shorter than the period at a rate of up to 10−10 M�/yr, consistent with low levels of accretion in other T Tauri stars. Most likely the warp at this separation from the star is induced by a protoplanet in the inner accretion disk. However, we cannot fully rule out the possibility of an AA Tau-like warp, or occultations by the Hill sphere around a forming planet

    The ESSO core curriculum committee update on surgical oncology

    Get PDF
    Introduction Surgical oncology is a defined specialty within the European Board of Surgery within the European Union of Medical Specialists (UEMS). Variation in training and specialization still occurs across Europe. There is a need to align the core knowledge needed to fulfil the criteria across subspecialities in surgical oncology. Material and methods The core curriculum, established in 2013, was developed with contributions from expert advisors from within the European Society of Surgical Oncology (ESSO), European Society for Radiotherapy and Oncology (ESTRO) and European Society of Medical Oncology (ESMO) and related subspeciality experts. Results The current version reiterates and updates the core curriculum structure needed for current and future candidates who plans to train for and eventually sit the European fellowship exam for the European Board of Surgery in Surgical Oncology. The content included is not intended to be exhaustive but, rather to give the candidate an idea of expectations and areas for in depth study, in addition to the practical requirements. The five elements included are: Basic principles of oncology; Disease site specific oncology; Generic clinical skills; Training recommendations, and, lastly; Eligibility for the EBSQ exam in Surgical Oncology. Conclusions As evidence-based care for cancer patients evolves through research into basic science, translational research and clinical trials, the core curriculum will evolve, mature and adapt to deliver continual improvements in cancer outcomes for patients
    corecore