13 research outputs found

    Initial experience with Angioseal™ : Safety and efficacy of the endovascular closure device

    No full text
    Background: Vascular access site management is crucial to safe, efficient, and comfortable diagnostic or interventional percutaneous procedures. The Angioseal™ vascular closure device has been shown to be safe and effective in reducing the time to hemostasis following angiographic or interventional procedures. Relatively few studies have been conducted in the UK to assess the safety and efficacy of the device in a local setting. Materials and Methods: Data were retrospectively reviewed on 147 patients who underwent either diagnostic angiography or percutaneous interventional procedures from January 2008 to October 2009, and who had the femoral access site closed by 6F VIP Angioseal. A total of 147 patients (F: 49, M: 98), including 80 right femoral punctures, 57 left femoral punctures, and 10 bilateral punctures were reviewed using radiological reports and patients′ clinical data. Data on antiplatelet and anticoagulant therapy were recorded. All procedures were carried out by two interventional radiologists at a single institution, under similar operating conditions. Results: There were a total of six complications (4.47%), of which one was a major complication (0.75%), i.e., retroperitoneal bleed. There were five minor complications (3.73%), which included device deployment failure (2), device malfunction (2), and a superficial hematoma (>6 cm). Total complications were 6 out of 157 (3.8%) [95% CI = 0.8-6.8%)]. Successful hemostasis was achieved in less than 5 min in over 97% of patients. Successful device deployment was seen in over 98% of cases. Conclusion: We conclude that in our experience, the Angioseal vascular closure device is a safe and efficient means of achieving hemostasis post antegrade or retrograde puncture for diagnostic and percutaneous intervention procedures

    Poly propyl ether imine (PETIM) dendrimer: A novel non-toxic dendrimer for sustained drug delivery

    No full text
    In the present study, an attempt was made to study the acute and sub-acute toxicity profile of G3-COOH Poly (propyl ether imine) PETIM] dendrimer and its use as a carrier for sustained delivery of model drug ketoprofen. Drug-dendrimer complex was prepared and characterized by FTIR, solubility and in vitro drug release study. PETIM dendrimer was found to have significantly less toxicity in A541 cells compared to Poly amido amine (PAMAM) dendrimer. Further, acute and 28 days sub-acute toxicity measurement in mice showed no mortality, hematological, biochemical or histopathological changes up to 80 mg/kg dose of PETIM dendrimer. The results of study demonstrated that G3-COOH PETIM dendrimer can be used as a safe and efficient vehicle for sustained drug delivery. (C) 2010 Elsevier Masson SAS. All rights reserved

    Impact of Annular Solar Eclipse on the Trace Gases and Dynamics of the Lower and Middle Atmosphere: Results Inferred From an Integrated Campaign “Suryagrahan‐2019”

    No full text
    Abstract An integrated campaign “Suryagrahan‐2019” with multi‐institutional support was conducted by launching a series of radiosondes/ozonesondes over 6‐different locations in India along with the operation of ST/MST radars and launching of RH‐200 rockets during the annular solar eclipse of 26 December 2019. We present the eclipse‐induced changes in the thermal structure, dynamics and trace gases in the lower and middle atmosphere. One of the novel findings is the formation of three step‐like isothermal structures in the lower stratosphere with a layer height of 1.4, 2.5, and 4 km, which is attributed to the adiabatic compression and expansion of the air parcel. These structures have both warming and cooling effect of the order of ±6 K. A significant increase of ozone by 20% in post‐eclipse scenario between 29 and 32 km is observed over Cochin. Strong downdrafts of ∼−0.25 m s−1 are observed between 12 and 16 km during the eclipse event, which is attributed to the atmospheric compression due to the sudden cooling during the eclipse event. Due to the changes in thermal structure, the atmospheric circulation changes are observed in the meridional wind. During the maximum obscuration, there is a sudden decrease in near‐surface and boundary layer ozone by 12–15 ppbv. The present study reiterates that the eclipse‐induced perturbations depend on the local time of the eclipse event and place of observations. It is envisaged that the results discussed in the study will improve our understanding of the eclipse induced perturbations in the Earth's atmosphere
    corecore