21 research outputs found

    Relative stability of ploidy in a marine Synechococcus across various growth conditions

    Get PDF
    Marine picocyanobacteria of the genus Synechococcus are ubiquitous phototrophs in oceanic systems. Consistent with these organisms occupying vast tracts of the nutrient impoverished ocean, most marine Synechococcus so far studied are monoploid, i.e., contain a single chromosome copy. The exception is the oligoploid strain Synechococcus sp. WH7803, which on average possesses around 4 chromosome copies. Here, we set out to understand the role of resource availability (through nutrient deplete growth) and physical stressors (UV, exposure to low and high temperature) in regulating ploidy level in this strain. Using qPCR to assay ploidy status we demonstrate the relative stability of chromosome copy number in Synechococcus sp. WH7803. Such robustness in maintaining an oligoploid status even under nutrient and physical stress is indicative of a fundamental role, perhaps facilitating recombination of damaged DNA regions as a result of prolonged exposure to oxidative stress, or allowing added flexibility in gene expression via possessing multiple alleles

    Ultraviolet stress delays chromosome replication in light/dark synchronized cells of the marine cyanobacterium Prochlorococcus marinus PCC9511.

    Get PDF
    International audienceBACKGROUND: The marine cyanobacterium Prochlorococcus is very abundant in warm, nutrient-poor oceanic areas. The upper mixed layer of oceans is populated by high light-adapted Prochlorococcus ecotypes, which despite their tiny genome (approximately 1.7 Mb) seem to have developed efficient strategies to cope with stressful levels of photosynthetically active and ultraviolet (UV) radiation. At a molecular level, little is known yet about how such minimalist microorganisms manage to sustain high growth rates and avoid potentially detrimental, UV-induced mutations to their DNA. To address this question, we studied the cell cycle dynamics of P. marinus PCC9511 cells grown under high fluxes of visible light in the presence or absence of UV radiation. Near natural light-dark cycles of both light sources were obtained using a custom-designed illumination system (cyclostat). Expression patterns of key DNA synthesis and repair, cell division, and clock genes were analyzed in order to decipher molecular mechanisms of adaptation to UV radiation. RESULTS: The cell cycle of P. marinus PCC9511 was strongly synchronized by the day-night cycle. The most conspicuous response of cells to UV radiation was a delay in chromosome replication, with a peak of DNA synthesis shifted about 2 h into the dark period. This delay was seemingly linked to a strong downregulation of genes governing DNA replication (dnaA) and cell division (ftsZ, sepF), whereas most genes involved in DNA repair (such as recA, phrA, uvrA, ruvC, umuC) were already activated under high visible light and their expression levels were only slightly affected by additional UV exposure. CONCLUSIONS: Prochlorococcus cells modified the timing of the S phase in response to UV exposure, therefore reducing the risk that mutations would occur during this particularly sensitive stage of the cell cycle. We identified several possible explanations for the observed timeshift. Among these, the sharp decrease in transcript levels of the dnaA gene, encoding the DNA replication initiator protein, is sufficient by itself to explain this response, since DNA synthesis starts only when the cellular concentration of DnaA reaches a critical threshold. However, the observed response likely results from a more complex combination of UV-altered biological processes

    Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria

    Get PDF
    Prochlorococcus and Synechococcus are the two most abundant and widespread phytoplankton in the global ocean. To better understand the factors controlling their biogeography, a reference database of the high-resolution taxonomic marker petB, encoding cytochrome b6, was used to recruit reads out of 109 metagenomes from the Tara Oceans expedition. An unsuspected novel genetic diversity was unveiled within both genera, even for the most abundant and well-characterized clades, and 136 divergent petB sequences were successfully assembled from metagenomic reads, significantly enriching the reference database. We then defined Ecologically Significant Taxonomic Units (ESTUs)—that is, organisms belonging to the same clade and occupying a common oceanic niche. Three major ESTU assemblages were identified along the cruise transect for Prochlorococcus and eight for Synechococcus. Although Prochlorococcus HLIIIA and HLIVA ESTUs codominated in irondepleted areas of the Pacific Ocean, CRD1 and the yet-to-be cultured EnvB were the prevalent Synechococcus clades in this area, with three different CRD1 and EnvB ESTUs occupying distinct ecological niches with regard to iron availability and temperature. Sharp community shifts were also observed over short geographic distances—for example, around the Marquesas Islands or between southern Indian and Atlantic Oceans—pointing to a tight correlation between ESTU assemblages and specific physico-chemical parameters. Together, this study demonstrates that there is a previously overlooked, ecologically meaningful, fine-scale diversity within some currently defined picocyanobacterial ecotypes, bringing novel insights into the ecology, diversity, and biology of the two most abundant phototrophs on Earth

    Evolutionary Mechanisms of Long-Term Genome Diversification Associated With Niche Partitioning in Marine Picocyanobacteria.

    Full text link
    Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus are the most abundant photosynthetic organisms on Earth, an ecological success thought to be linked to the differential partitioning of distinct ecotypes into specific ecological niches. However, the underlying processes that governed the diversification of these microorganisms and the appearance of niche-related phenotypic traits are just starting to be elucidated. Here, by comparing 81 genomes, including 34 new Synechococcus, we explored the evolutionary processes that shaped the genomic diversity of picocyanobacteria. Time-calibration of a core-protein tree showed that gene gain/loss occurred at an unexpectedly low rate between the different lineages, with for instance 5.6 genes gained per million years (My) for the major Synechococcus lineage (sub-cluster 5.1), among which only 0.71/My have been fixed in the long term. Gene content comparisons revealed a number of candidates involved in nutrient adaptation, a large proportion of which are located in genomic islands shared between either closely or more distantly related strains, as identified using an original network construction approach. Interestingly, strains representative of the different ecotypes co-occurring in phosphorus-depleted waters (Synechococcus clades III, WPC1, and sub-cluster 5.3) were shown to display different adaptation strategies to this limitation. In contrast, we found few genes potentially involved in adaptation to temperature when comparing cold and warm thermotypes. Indeed, comparison of core protein sequences highlighted variants specific to cold thermotypes, notably involved in carotenoid biosynthesis and the oxidative stress response, revealing that long-term adaptation to thermal niches relies on amino acid substitutions rather than on gene content variation. Altogether, this study not only deciphers the respective roles of gene gains/losses and sequence variation but also uncovers numerous gene candidates likely involved in niche partitioning of two key members of the marine phytoplankton

    Bumi dan Antariksa : Kosmografi

    No full text

    Construction logistics safety measures

    Get PDF
    Construction logistics is really important as one of the enablers to support rapid development and economy in Malaysia. Heavy trucks used in construction logistics provide the ability to move more and bigger materials for development and manufacturing. However, it caused many problems, particularly in safety aspects, to the community. Hence, it is crucial to investigate more on the safety measures practised in construction logistics activities to adopt the right safety guideline. Three objectives were established. Firstly, to investigate current state of construction logistics in Malaysia. The second objective is to determine the safety measures practised for construction logistics activities by using five indicators from construction safety and health programs: rules and regulations, communications, accident investigation, training and evaluation. Lastly, the objective is to recommend suggestion to improve current situation of construction logistics activities that possessed danger to communities. With extensive data collection, this study has succeeded in stipulating evidence to show: (1) lack of stricter enforcement to combat wrongdoings in construction logistics activities, (2) lack of communication and information sharing among stakeholders, from the authorities, industry players to the communities and (3) insufficient training for employees, particularly drivers. This research has also contributed to future high safety performances in logistics company by providing a guideline and indicators that can be used by the company to measure its safety program practiced

    Conformal isolation of high-aspect-ratio TSVs using a low-kappa dielectric deposited by filament-assisted CVD

    No full text
    International audienceIn this study, SiOCH thin films were deposited by filament assisted chemical vapor deposition using methyltriethoxysilane. It is shown that annealing the films at 400 degrees C (with or without UV-assist) is required to meet specifications in terms of dielectric properties (low-kappa values and good insulating properties). This work highlights FACVD as a promising technique to allow the deposition of conformal dielectric thin films within High-Aspect-Ratio TSVs. Step coverage higher than 70% were obtained within 10 * 80 mu m TSVs. Then, FACVD deposited SiOCH films can be considered as a promising candidate for use within TSV technologies

    Life-cycle-generation-specific developmental processes are modified in the immediate upright mutant of the brown alga Ectocarpus siliculosus

    No full text
    International audienceDevelopment of the sporophyte and gametophyte generations of the brown alga E. siliculosus involves two different patterns of early development, which begin with either a symmetric or an asymmetric division of the initial cell, respectively. A mutant, immediate upright (imm), was isolated that exhibited several characteristics typical of the gametophyte during the early development of the sporophyte generation. Genetic analyses showed that imm is a recessive, single-locus Mendelian factor and analysis of gene expression in this mutant indicated that the regulation of a number of life-cycle-regulated genes is specifically modified in imm mutant sporophytes. Thus, IMM appears to be a regulatory locus that controls part of the sporophyte-specific developmental programme, the mutant exhibiting partial homeotic conversion of the sporophyte into the gametophyte, a phenomenon that has not been described previously
    corecore