92 research outputs found

    Effects of acute fatigue on the volitional and magnetically-evoked electromechanical delay of the knee flexors in males and females

    Get PDF
    Neuromuscular performance capabilities, including those measured by evoked responses, may be adversely affected by fatigue; however, the capability of the neuromuscular system to initiate muscle force rapidly under these circumstances is yet to be established. Sex-differences in the acute responses of neuromuscular performance to exercise stress may be linked to evidence that females are much more vulnerable to ACL injury than males. Optimal functioning of the knee flexors is paramount to the dynamic stabilisation of the knee joint, therefore the aim of this investigation was to examine the effects of acute maximal intensity fatiguing exercise on the voluntary and magnetically-evoked electromechanical delay in the knee flexors of males and females. Knee flexor volitional and magnetically-evoked neuromuscular performance was assessed in seven male and nine females prior to and immediately after: (i) an intervention condition comprising a fatigue trial of 30-seconds maximal static exercise of the knee flexors, (ii) a control condition consisting of no exercise. The results showed that the fatigue intervention was associated with a substantive reduction in volitional peak force (PFV) that was greater in males compared to females (15.0%, 10.2%, respectively, p < 0.01) and impairment to volitional electromechanical delay (EMDV) in females exclusively (19.3%, p < 0.05). Similar improvements in magnetically-evoked electromechanical delay in males and females following fatigue (21%, p < 0.001), however, may suggest a vital facilitatory mechanism to overcome the effects of impaired voluntary capabilities, and a faster neuromuscular response that can be deployed during critical times to protect the joint system

    The effects of knee joint angle on neuromuscular activity during electrostimulation in healthy older adults

    Get PDF
    Introduction Electrostimulation devices stimulate the common peroneal nerve, producing a calf muscle-pump action to promote venous circulation. Whether knee joint angle influences calf neuromuscular activity remains unclear. Our aim was to determine the effects of knee joint angle on lower limb neuromuscular activity during electrostimulation. Methods Fifteen healthy, older adults underwent 60 min of electrostimulation, with the knee joint at three different angles (0°, 45° or 90° flexion; random order; 20 min each). Outcome variables included electromyography of the peroneus longus, tibialis anterior and gastrocnemius medialis and lateralis and discomfort. Results Knee angle did not influence tibialis anterior and peroneus longus neuromuscular activity during electrostimulation. Neuromuscular activity was greater in the gastrocnemius medialis (p = 0.002) and lateralis (p = 0.002) at 90°, than 0° knee angle. Electrostimulation intensity was positively related to neuromuscular activity for each muscle, with a knee angle effect for the gastrocnemius medialis (p = 0.05). Conclusion Results suggest that during electrostimulation, knee joint angle influenced gastrocnemii neuromuscular activity; increased gastrocnemius medialis activity across all intensities (at 90°), when compared to 0° and 45° flexion; and did not influence peroneus longus and tibialis anterior activity. Greater electrostimulation-evoked gastrocnemii activity has implications for producing a more forceful calf muscle-pump action, potentially further improving venous flow

    Dynamic Mechanisms of Cell Rigidity Sensing: Insights from a Computational Model of Actomyosin Networks

    Get PDF
    Cells modulate themselves in response to the surrounding environment like substrate elasticity, exhibiting structural reorganization driven by the contractility of cytoskeleton. The cytoskeleton is the scaffolding structure of eukaryotic cells, playing a central role in many mechanical and biological functions. It is composed of a network of actins, actin cross-linking proteins (ACPs), and molecular motors. The motors generate contractile forces by sliding couples of actin filaments in a polar fashion, and the contractile response of the cytoskeleton network is known to be modulated also by external stimuli, such as substrate stiffness. This implies an important role of actomyosin contractility in the cell mechano-sensing. However, how cells sense matrix stiffness via the contractility remains an open question. Here, we present a 3-D Brownian dynamics computational model of a cross-linked actin network including the dynamics of molecular motors and ACPs. The mechano-sensing properties of this active network are investigated by evaluating contraction and stress in response to different substrate stiffness. Results demonstrate two mechanisms that act to limit internal stress: (i) In stiff substrates, motors walk until they exert their maximum force, leading to a plateau stress that is independent of substrate stiffness, whereas (ii) in soft substrates, motors walk until they become blocked by other motors or ACPs, leading to submaximal stress levels. Therefore, this study provides new insights into the role of molecular motors in the contraction and rigidity sensing of cells

    Interactions between Connected Half-Sarcomeres Produce Emergent Mechanical Behavior in a Mathematical Model of Muscle

    Get PDF
    Most reductionist theories of muscle attribute a fiber's mechanical properties to the scaled behavior of a single half-sarcomere. Mathematical models of this type can explain many of the known mechanical properties of muscle but have to incorporate a passive mechanical component that becomes ∼300% stiffer in activating conditions to reproduce the force response elicited by stretching a fast mammalian muscle fiber. The available experimental data suggests that titin filaments, which are the mostly likely source of the passive component, become at most ∼30% stiffer in saturating Ca2+ solutions. The work described in this manuscript used computer modeling to test an alternative systems theory that attributes the stretch response of a mammalian fiber to the composite behavior of a collection of half-sarcomeres. The principal finding was that the stretch response of a chemically permeabilized rabbit psoas fiber could be reproduced with a framework consisting of 300 half-sarcomeres arranged in 6 parallel myofibrils without requiring titin filaments to stiffen in activating solutions. Ablation of inter-myofibrillar links in the computer simulations lowered isometric force values and lowered energy absorption during a stretch. This computed behavior mimics effects previously observed in experiments using muscles from desmin-deficient mice in which the connections between Z-disks in adjacent myofibrils are presumably compromised. The current simulations suggest that muscle fibers exhibit emergent properties that reflect interactions between half-sarcomeres and are not properties of a single half-sarcomere in isolation. It is therefore likely that full quantitative understanding of a fiber's mechanical properties requires detailed analysis of a complete fiber system and cannot be achieved by focusing solely on the properties of a single half-sarcomere

    Variable, but not free-weight, resistance back squat exercise potentiates jump performance following a comprehensive task-specific warm-up

    Get PDF
    Studies examining acute, high-speed movement performance enhancement following intense muscular contractions (frequently called "post-activation potentiation"; PAP) often impose a limited warm-up, compromizing external validity. In the present study, the effects on countermovement vertical jump (CMJ) performance of back squat exercises performed with or without elastic bands during warm-up were compared. After familiarization, fifteen active men visited the laboratory on two occasions under randomized, counterbalanced experimental squat warm-up conditions: (a) free-weight resistance (FWR) and (b) variable resistance (VR). After completing a comprehensive task-specific warm-up, three maximal CMJs were performed followed by three back squat repetitions completed at 85% of 1-RM using either FWR or VR Three CMJs were then performed 30 seconds, 4 minutes, 8 minutes, and 12 minutes later. During CMJ trials, hip, knee, and ankle joint kinematics, ground reaction force data and vastus medialis, vastus lateralis, and gluteus maximus electromyograms (EMG) were recorded simultaneously using 3D motion analysis, force platform, and EMG techniques, respectively. No change in any variable occurred after FWR (P > 0.05). Significant increases (P < 0.05) were detected at all time points following VR in CMJ height (5.3%-6.5%), peak power (4.4%-5.9%), rate of force development (12.9%-19.1%), peak concentric knee angular velocity (3.1%-4.1%), and mean concentric vastus lateralis EMG activity (27.5%-33.4%). The lack of effect of the free-weight conditioning contractions suggests that the comprehensive task-specific warm-up routine mitigated any further performance augmentation. However, the improved CMJ performance following the use of elastic bands is indicative that specific alterations in force-time properties of warm-up exercises may further improve performance

    Is There an Economical Running Technique? A Review of Modifiable Biomechanical Factors Affecting Running Economy

    Get PDF

    The multidimensional evaluation and treatment of anxiety in children and adolescents: rationale, design, methods and preliminary findings

    Full text link
    corecore