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ABSTRACT

Studies examining acute, high-speed movement performance enhancement following intense 

muscular contractions (frequently called ‘post-activation potentiation’; PAP) often impose a 

limited warm-up, compromizing external validity.  In the present study the effects on 

countermovement vertical jump (CMJ) performance of back squat exercises performed with or 

without elastic bands during warm-up were compared.  After familiarization, fifteen active men 

visited the laboratory on two occasions under randomized, counterbalanced experimental squat 

warm-up conditions: (1) free-weight resistance (FWR) and (2) variable resistance (VR).  After 

completing a comprehensive task-specific warm-up, three maximal CMJs were performed 

followed by three back squat repetitions completed at 85% of 1-RM using either FWR or VR.  

Three CMJs were then performed 30 s, 4 min, 8 min and 12 min later.  During CMJ trials, hip, 

knee and ankle joint kinematics, ground reaction force data and vastus medialis, vastus lateralis 

and gluteus maximus electromyograms (EMG) were recorded simultaneously using 3D motion 

analysis, force platform, and EMG techniques, respectively.  No change in any variable 

occurred after FWR (p>0.05).  Significant increases (p<0.05) were detected at all time points 

following VR in CMJ height (5.3-6.5%), peak power (4.4-5.9%), rate of force development 

(12.9-19.1%), peak concentric knee angular velocity (3.1-4.1%) and mean concentric vastus 

lateralis EMG activity (27.5-33.4%).  The lack of effect of the free-weight conditioning 

contractions suggests that the comprehensive task-specific warm-up routine mitigated any 

further performance augmentation.  However, the improved CMJ performance following the 

use of elastic bands is indicative that specific alterations in force-time properties of warm-up 

exercises may further improve performance.  

Keywords: elastic bands, PAP, conditioning activity, explosive strength, kinetics, kinematics
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INTRODUCTION

Pre-exercise (i.e. warm-up) routines are typically designed to precondition the neuromuscular 

system to enhance performance and reduce injury risk during subsequent high-intensity 

physical activities.1-3  Performing maximal or near-maximal muscular contractions during a 

warm-up routine are important as they can induce short-term increases in force production and 

physical performance4 through a number of mechanisms including, but not limited to, increases 

in muscle temperature,5 reductions in muscle thixotropy or viscosity,3 increases in myofilament 

calcium sensitivity,6 an increased neural drive (leading to higher-frequency motor unit 

discharge) and optimization of motor control strategies.7  Such changes lead to an increased 

mechanical power output (i.e. above previous maximal voluntary capacity), a state often 

referred to as post-activation potentiation (PAP) but which may not be synonymous with 

‘classic’ PAP, which refers to an increase in muscular force production during an electrically 

elicited (twitch) contraction.8  Regardless of the mechanism, short-term improvements in 

performance (i.e. post-activation performance enhancements [PAPE])9 are commonly reported 

following intense muscular contractions that have important implications for the design of 

warm-up strategies. 

The acute augmentation of physical performance has been explored using different warm-up 

strategies including light muscle stretching, cycling, running and sub-maximal repetitions of 

the primary task10 or no warm-up at all.8  Consequently, a “comprehensive task-specific” 

warm-up (including progressively intense task-specific conditioning activities) is often not 

provided prior to the specific activity being tested.  Although warm-up strategies adopted to 

potentiate muscular force production have been shown to enhance athletic performance 

following a conditioning activity, it is unclear whether the enhancement of athletic performance 
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observed is a consequence of acute neuromuscular alteration relating to the conditioning 

activity, or whether it simply reflects a standard warm-up itself.11

Heavy resistance exercise has been shown to acutely potentiate muscle force output, at least 

when a comprehensive task-specific warm-up is not completed,2,8,12 however force production 

can also be reduced as a result of fatigue or coordination interference (i.e.  perseveration) 

processes, which may mask any potentiating effects.1  Some studies have reported that vertical 

jump performance enhancements can be detected after only 20 s13 and 90 s14 following 

maximal isometric squats and heavy box squats, respectively.  Findings from these studies are 

indicative that effects may be detected within the time course of “classic” PAP observed using 

muscle twitch examinations.8  Nonetheless, a meta-analysis of the literature revealed that 

minimal performance enhancement was likely when the rest period was less than 2 min, 

whereas longer rest periods of 3-7 min were more beneficial.15  The equivocal findings likely 

result from disparate study methodologies including types of conditioning activity (i.e. 

movement-pattern specificity), performance tasks, delay between the conditioning activity and 

performance testing, study participant characteristics (e.g. experienced/novice lifters) and 

warm-up performed, which limit our understanding of the potentiating effects of these warm-

up strategies. 

The countermovement vertical jump (CMJ) task is commonly performed in sport but is also a 

model commonly used to test power and muscle function in clinical research environment.  

Various high-intensity exercise types have been performed before maximal CMJ tests 

including resistance-, plyometric-, and electrical muscle stimulation-based exercises.16,18  The 

back squat exercise is a fundamental exercise for the development of lower-limb strength and 

power12 and its use during a warm-up has been reported to improve subsequent functional 
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performance including CMJ height;1,4 this enhancement is commonly attributed to the PAP 

effect.  However, maximal voluntary muscle activity occurs only during a short period in the 

early ascending (concentric) phase, near the “sticking point” in successful maximal (1-RM) 

back squat attempts.  The larger internal and smaller external moment arms developed at the 

hip and knee joints (resulting in a greater mechanical advantage) combined with the optimized 

force-length characteristics of lower-limb muscles, ensures that only a submaximal muscle 

activation is needed for successful completion of the remaining part of the lift.18  Thus, 

theoretically, variations of the exercise that evoke a greater muscle activation throughout the 

lift could result in a greater warm-up (i.e. PAPE) effect and improve CMJ performance.  A 

possible means to alter the loading characteristics of the squat lift is the use of elastic bands to 

reduce the external load in the deepest part of the squat while increasing external load when 

the joints are more extended, the internal moment arms are greater and optimal muscle lengths 

are achieved.18,19  Previous studies comparing elastic bands to free-weight squats for muscle 

activities (EMG), kinematics and kinetics has shown significantly higher EMG, movement 

velocity, and external power in the first quarter of the eccentric phase and the last quarter of 

the concentric phase of the squat exercise when using elastic bands.19 Accordingly, it has been 

found that preconditioning contractions using elastic bands significantly increased subsequent 

1-RM squat test performance without detectable changes in knee extensor muscle activity or

knee flexion angle, although eccentric and concentric velocities were reduced.2 

Accordingly, elastic bands can be used to increase resistance in ranges of motion where the 

muscles can produce the greatest relative force as well as unload the system where muscle 

forces are compromized, and thus allow a larger overall impulse to be produced.  Given the 

possibility for higher muscle activation and greater total work done during the lift, it might be 

hypothesized that these conditions would allow for a greater potentiating effect.  
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Individuals incorporating the use of elastic band-based strategies into a warm-up routine may 

observe an acute enhancement of performance, and thus benefit from a greater mechanical 

stimulus during training.2  However, a common limitation in the literature is that minimal or 

no warm-up has been provided before imposing the conditioning activity8 limiting the 

comprehensive applicability and external validity of the data.  Therefore, the purpose of this 

study was to compare the influence of free-weight resistance (FWR) and variable resistance 

(VR; imposed through elastic bands) squat exercises following a task-specific comprehensive 

warm-up on subsequent CMJ performance at different post-conditioning time points (i.e. 30 s, 

4 min, 8 min, and 12 min).  It was hypothesized that (i) FWR and VR would enhance 

subsequent CMJ performance; however the variation in resistance imposed by the elastic bands 

during the squat lift would (ii) further enhance subsequent CMJ performance, (iii) alter CMJ 

kinetic and kinematic parameters (i.e. peak power, peak eccentric kinetic energy, impulse- and 

time-based descent-to-ascent asymmetry indexes, vertical stiffness (Kvert), rate of force 

development (RFD), hip, knee and ankle joint kinematics), and (iv) increase the muscle activity 

of the lower-limb extensor muscles more than squatting without elastic bands.

MATERIALS AND METHODS

Participants 

Fifteen active men (age = 21.7 ± 1.1 y, height = 1.8 ± 1.9 m, mass = 77.6 ± 2.6 kg) with ≥5 y 

experience with heavy weight training of varying levels (from regional to elite) and training 

backgrounds volunteered to participate after providing written informed consent and 

completing a pre-test medical questionnaire.  The participants’ training protocols involved 

resistance training, sprint running, power exercises, dynamic/explosive exercises, agility drills 

and other specific exercises relevant to their sports.  The participants had no recent illness or 
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lower-limb injury, were instructed to maintain normal eating and drinking habits throughout 

the study, and avoided strenuous exercise and stimulant use at least 48 h prior to testing.  Ethical 

approval was granted by the ethics committee at the University of Thessaly, Greece, with the 

study conducted in accordance with the Declaration of Helsinki.  Effect size (ES) values 

(Cohen’s d) were calculated from mean changes in variables (jump height, power, RFD and 

EMG) from previous studies using similar methods. To ensure an adequate population to reach 

statistical power (set at 0.8) was recruited, effect sizes were initially calculated from related 

research21-23 for jump height (ES = 1.48), power (ES = 1.0), RFD (ES = 1.29), and EMG (ES = 

1.2).  To ensure an adequate sample, the measure with the smallest ES (power, 1.0) was used 

to calculate sample size.  The analysis revealed that the initial sample size required for 

statistical power was 14; thus, considering the possibility of participant withdrawal and data 

loss, 18 participants were recruited with 15 participants completing the study.

Protocol

Overview

A randomized, cross-over design was implemented to compare CMJ performance following 

two warm-up conditions: free-weight resistance (FWR) or variable resistance (VR) back squat 

exercise.  Participants completed a familiarization session one week prior to the two 

experimental sessions, each separated by 72 h and performed at the same time of the day.  

During familiarization, anthropometric characteristics were recorded, one-repetition maximum 

(1-RM) back squat load was determined, and the participants were familiarized with all 

experimental procedures.  During experimental conditions, following the comprehensive task-

specific warm-up (described later), the participants performed three pre-intervention CMJs 

followed by back squats at 85% of 1-RM using either FWR or VR warm-up.  CMJ trials were 

then performed at 30 s, 4 min, 8 min and 12 min after the intervention.  Peak power output, 
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peak eccentric kinetic energy, impulse- and time-based descent-to-ascent asymmetry indexes, 

peak normalized (to body weight) Kvert and RFD, peak knee flexion angle, peak eccentric and 

concentric knee angular velocities, peak and mean eccentric and concentric electromyograms 

(EMG; vastus lateralis (VL), vastus medialis (VM), gluteus maximus (Glut)), and jump height 

were measured during all CMJ trials (described later). 

Familiarization session and one-repetition (1-RM) squat lift test

The 1-RM back squat protocol was adopted from Sheppard and Triplett et al.24  Participants 

initially performed a 5 min cycling warm-up (Monark 874E, Varberg, Sweden) at 65 rpm with 

a 1-kg resistance load followed 2 min later by 2 sets of 10 back squat repetitions using an 

unloaded 20-kg Olympic bar.  The participants then completed 8-10 repetitions of the squat lift 

exercise at 50% of their estimated 1-RM load before the load was increased by 20% for 3-5 

repetitions, and by a further 20% for 2-3 repetitions with a 2 min rest between sets.  The load 

was finally increased by 5% movements with 2-4 min rest between lifts until participants failed 

to complete the lift; the previous successful attempt was recorded as their 1-RM load.  To 

ensure correct technique, participants were instructed to place the bar above the posterior 

deltoids at the base of the neck and position the feet shoulder width apart with the toes pointed 

slightly outward and attempt to squat to a position where the knee was flexed to ∼90° before 

returning to a standing position.  This was visually assessed by an experienced, certified British 

Amateur Weight Lifting Association (BAWLA) spotter throughout all testing procedures to 

ensure correct technique and safety during the lifts, with participants receiving strong verbal 

encouragement to promote maximal effort.  

Comprehensive task-specific warm-up and countermovement jump trials
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During the experimental trials the participants performed a comprehensive task-specific warm-

up consisting of 5 min of cycling followed by five continuous unloaded squats (i.e. non-

jumping) at a rhythm of 2 s/ 2 s (eccentric/concentric) and a further 5 squats at a rhythm of 1 

s/ 1 s after a 30 s rest.  After 20-s rest, five continuous CMJs were performed at ~70% of the 

participants’ perceived maximum and, after a further 30 s rest, maximal CMJs were performed 

every 30 s until three consecutive jumps were within 3% of jump height (4-7 jumps were 

performed in all trials).  The CMJ was performed from a stationary upright standing position 

with hands positioned on the hips, making a preliminary downward movement with the hips 

and knees flexed, and immediately jumping vertically up as high possible.12  

Two minutes after the completion of the warm-up, three maximal pre-intervention CMJ trials 

were performed to establish baseline (i.e. after warm-up) performance.  A conditioning set of 

three repetitions of back squats at 85% of the previously determined 1-RM using either FWR 

or VR (described later) was then performed before the participants completed three CMJs 30 

s, 4 min, 8 min and 12 min (see Table 1) later with participants receiving verbal encouragement 

to jump as high as possible.  The post-intervention intervals were selected from previous data 

describing the time-course of the performance augmentation (PAP) response.21,25 

Table 1 about here

Conditioning activities: free-weight resistance (FWR) and variable resistance (VR)

During the FWR condition, the load was adjusted to 85% of the previously determined 1-RM 

load with the participants performing one set of three-repetition back squats.  In the VR warm-

up condition, 35% of the total load was generated from band resistance. To ensure a similar 

load of 85% 1-RM across FWR and VR conditions, mechanical properties of the bands were 
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determined to allow the band resistance to generate 35% of the total load.  Half of the band’s 

resistance was subtracted from the total free-weight load to ensure the elastic bands did not 

have substantially different average resistance compared with the FWR condition, thus both 

the FWR and VR warm-up conditions were equalized, as previously reported.20,22  The 

participants stood on a force platform with 85% 1-RM load to determine the combined load 

(kg), the bar was then unloaded to adjust the band tension.  The elastic bands were anchored to 

the floor with custom-made weight stands and attached equidistant to the ends of the Olympic 

bar to ensure the participant’s stability.  The thickness and lengths of the elastic bands were 

adjusted so that: (i) the tension in the bands increased the ground reaction force (measured by 

force platform) by 35% of the 85% load when the participants were standing, but (ii) bands 

were slack in a full squatting position and thus provided no additional loading.  The linear 

force-length properties of the bands ensured, therefore, that the average load during the lift 

equated to 35% of the total load.  For example, a 100-kg load in the FWR condition would 

require 35-kg (35%) to be generated from the bands.  Half of the 35-kg load (i.e. 17.5 kg) was 

removed from the bar with the 35-kg resistance added from the bands providing a total load of 

117.5 kg in the standing position.  As band tension reduced as the participant squats, 35 kg of 

load was removed leaving the 82.5 kg from the bar in the full squatted position.  Thus, the 

average loading throughout the lift in this example is 100 kg, identical to the FWR condition 

whilst enabling 35% to be generated by band tension.

Kinetic and kinematic analyses

Kinematic data were collected during the CMJs using a Vicon motion analysis system (T-

Series, Oxford Metrics LTDA, Oxford, UK) with 10 cameras operating at 100 Hz surrounding 

two force platforms (Bertec, FP4060-10-2000, Bertec Corporation, Columbus, OH, USA).  

Ground reaction forces were sampled at 1000 Hz and time-synchronized with the Vicon system 
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(see Figure 1).  The data were then filtered using Woltring’s quantic spline algorithm26 with a 

mean squared error setting of 15 before running the Plug-In-Gait biomechanical model (Vicon 

Plug-in-Gait, Oxford Metrics).  The procedures identified by Davis et al.27 were followed to 

define Cardan angles and to reconstruct a system of embedded coordinates from the marker set 

to 0° at the three joints of the lower extremities (hip, knee and ankle) in a standing position.  

Lower-limb kinetic and kinematic data were captured by placing 16 reflective markers over the 

pelvis, left and right thigh, left and right shank in a straight line, and the left and right foot at a 

right angle to the leg.  Data were analyzed using Vicon Nexus (v.2.3) software to determine 

peak hip, knee and ankle flexion angle and angular velocity data during the pre- and post-

intervention CMJ trials (see Figure 1).  

Figure 1 about here

All jumps were performed from the standing position with each foot in parallel on two force 

platforms providing a separate yet time-synchronized measurement of the force data for each 

leg.  The participant’s body weight was calculated by averaging the vertical force from each 

platform when the participants were stationary.  The initiation of the jump (i.e. the beginning 

of the eccentric phase) was identified as the point when the ground reaction force (N) decreased 

2 standard deviations (SD) below the mean baseline force.  The vertical ground reaction force 

was integrated using the trapezoid method during the eccentric and concentric phases of the 

jump.  The net impulse was calculated independently and summed from the left and right force 

platforms.  Ground reaction forces were directly quantified by integrating the applied force 

over time (i.e. impulse), which is equivalent to the change in momentum of the body:  

𝐽 =  ʃ𝐹 𝑑𝑡 =  ∆𝑝

where J = impulse, F = force, t = time and ∆p = change in momentum.
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The take-off velocity was determined from impulse by dividing by body mass, and the jump 

height was calculated using standard equations for motion.28  To calculate power, the impulse-

momentum approach was used.  Since the force, mass and initial velocity conditions were 

known, instantaneous velocity could be calculated.  The instantaneous power was calculated 

as force  velocity and the peak values were determined for the propulsive phase of the CMJ:×

𝑉(0) = 0

𝐹(і)𝑡 = 𝑚(𝑣(і + 1) ― 𝑣(і))

∆𝑣 = (𝐹(і)𝑡)/𝑚

𝑃(і) =  𝐹(і) ×  𝑉(і)

where F = force, t = 1/sampling frequency, m = mass of body, load, v = velocity, and P = 

power.  

The peak eccentric kinetic energy (KE) developed during the jumps was calculated as:

𝐾𝐸 = ½𝑚𝑣2

where m is the participant’s mass and v is the velocity of the countermovement phase. 

The impulse-based asymmetry index was calculated by dividing the negative and positive 

impulses, where the negative impulse describes the impulse that negatively accelerates the 

body downwards and the positive impulse accelerates the body upwards.  The index was 

calculated to estimate the efficiency of the metabolic energy conversion into mechanical work 

(i.e. storage of elastic energy during eccentric contraction) performed during the CMJ from the 

force applied by the body to the ground29 and subsequently released energy during the 

concentric phase of the SSC.  The time-based asymmetry index was calculated as the quotient 

of times A + B, where A is the time from force first rising above 1 body weight to the peak 
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vertical force and B is the time from peak force until force drops below 1 body weight.  Kvert

was calculated by dividing the peak vertical ground reaction force by the maximal vertical 

displacement of the center of mass during contact with the ground30

𝐾𝑣𝑒𝑟𝑡 = 𝐹𝑚𝑎𝑥 / ∆𝑦

where Fmax = maximum vertical force, and ∆y = maximum vertical displacement of the center 

of mass.  The vertical displacement was determined by the double integration of the vertical 

force trace according to methods of Cavagna.31 

The peak RFD (normalized to body weight) was calculated from the initiation of the jump (i.e. 

first rise in force during the eccentric phase) using the average force-time curve with a 50-ms 

time window.  

Muscle activity (electromyography; EMG)

EMG data were collected wirelessly using a Myon MA-320 EMG system (Myon AG, 

Schwarzenberg, Switzerland) from vastus lateralis (VL), vastus medialis (VM) and gluteus 

maximus (Glut).  The skin was shaved, abraded and cleansed with alcohol before bipolar 

adhesive surface electrodes (Noraxon Dual Electrodes, Ag-AgCl, Noraxon USA, Inc, 

Scottsdale, AZ) were placed over the muscle belly with an inter-electrode distance of 2 cm 

according to SENIAM guidelines.  EMG data were sampled at 2000 Hz and imported into 

ProEMG software (version 4.1) and filtered using a Butterworth (20-500 Hz bandpass) filter 

before using a symmetric moving root-mean-square algorithm with a 50-ms sampling window.  

The Myon EMG software was integrated with an optimal tracking device for synchronization 

between the systems (Vicon motion analysis system, Oxford, UK).  The normalized EMG 

amplitude during isometric squat lifts (% maximal voluntary contraction [MVC]) for each 
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muscle was used as a measure of neuromuscular activity during the jumps (see Figure 1), with 

peak and mean EMG activity recorded during the eccentric and concentric phases.  

Data analyses

All data were analyzed using SPSS statistical software (version 24.0; IBM, Chicago, IL, USA); 

all data are presented as mean ± SE.  Normal distribution was assessed using Shapiro-Wilks 

test; no significant difference (p > 0.05) was detected in any variable indicating that all data 

sets were normally distributed.  Separate multivariate analyses of variance (MANOVAs) were 

used to compare (a) jump height and peak power, and (b) EMG.  Where significant differences 

were detected, separate two-way repeated measures ANOVAs (time  condition) were used ×

to determine differences in (a) jump height, (b) peak power, (c) peak eccentric kinetic energy, 

(d) impulse- and time-based descent-to-ascent asymmetry indexes, (e) peak normalized RFD,

(f) peak hip, knee and ankle flexion angle, (g) peak eccentric and concentric hip, knee and

ankle angular velocities, (h) peak and mean eccentric and concentric EMG activities during 

CMJ trials.  Significance was accepted at p < 0.05 for all tests.  

Reliability

Reliability for all measures was determined during the pre-intervention vertical jumps from the 

VR and FWR warm-up conditions.  No significant differences (p > 0.05) were detected in any 

measure and high intraclass correlation coefficients (ICCs) calculated for jump height (0.95), 

peak power (0.98), peak eccentric kinetic energy (0.99), impulse- (0.96) and time-based (0.91) 

asymmetry indexes, Kvert (0.81), peak RFD to 50 ms (0.92), peak hip, knee and ankle flexion 

angle ranged from 0.67 to 0.96, peak angular velocities ranged from 0.76, 0.95, 0.85 to 0.85, 

0.95 0.79 for hip, knee and ankle, respectively.  ICCs for the EMG data ranged from 0.73 to 

0.89, 0.85 to 0.92, 0.85 to 0.92 for VL, VM and Glut, respectively.  Coefficients of variation 
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(CoV) expressed as a percentage of the mean were also calculated for jump height (8.0%), peak 

power (6.2%), peak eccentric kinetic energy (8.5%), impulse- (4.9%), and time-based (14.6%) 

asymmetry indexes, Kvert (8.7%), peak RFD to 50 ms (12.5%), peak hip, knee and ankle flexion 

angle ranged from 3.8% to 7.6%, peak angular velocities ranged from 5.6%, 5.2%, 14.8% to 

5.0%, 3.4%, 6.3% for hip, knee and ankle, respectively. CoVs for EMG data 9.0% to 14.3%, 

11.3% to 14.1%, 14.9% to 22% for VL, VM and Glut, respectively. 

RESULTS

In the FWR condition, no significant changes (p > 0.05) were found in jump height (range = 

3.0 ± 2.0 % to 4.9 ± 2.2%) at any time point compared with pre-intervention data (see Figure 

1).  Also, no significant changes (p > 0.05) were observed in peak power (0.1 ± 2.4% to 3.6 ± 

1.6%), peak eccentric kinetic energy (0.5 ± 4.6% to 4.9 ± 3.6%), impulse- (0.6 ± 1.6% to 2.0 ± 

1.9%) and time-based (4.5 ± 7.0% to 14.8 ± 8.4%) asymmetry indexes, Kvert (3.1 ± 4.3% to 5.8 

± 4.1%) or peak normalized RFD (3.1 ± 6.1% to 11.8 ± 8.4%) at any time point (see Table 2).  

No changes (p > 0.05) were detected in peak eccentric hip (0.5 ± 1.7% to 2.6 ± 1.9%), knee 

(0.5 ± 2.1% to 2.6 ± 2.2%), ankle (2.2 ± 5.4% to 9.0 ± 5.0%) or concentric hip (1.2 ± 2.1% to 

3.7 ± 2.0%), knee (0.5 ± 1.7% to 1.7 ± 2.0%), ankle (1.4 ± 2.1% to 4.7 ± 2.6%) angular 

velocities, or peak hip (1.5 ± 1.3° to 3.4 ± 1.2°), knee (0.1 ± 1.2° to 1.7 ± 1.9°), ankle (0.1 ± 

0.6° to 0.6 ± 0.5°) flexion angle (see Table 3).  Furthermore, no changes in peak or mean 

eccentric EMG eccentric activity (p > 0.05) in VL (peak = 2.4 ± 3.8% to 7.2 ± 5.2%; mean = 

0.7 ± 6.4% to 7.3 ± 5.7%), VM (peak = 0.6 ± 3.2% to 8.3 ± 5.0%; mean = 8.9 ± 4.5% to 10.9 

± 3.2%), Glut (peak = 0.9 ± 6.0% to 8.7 ± 3.8%; mean = 2.3 ± 6.0% to 10.7 ± 7.4%) or 

concentric EMG in VL (peak = 0.4 ± 10.3% to 9.4 ± 8.3%; mean = 2.2 ± 8.6% to 7.0 ± 6.9%), 

VM (peak = 0.5 ± 4.6% to 7.1 ± 5.2%; mean = 1.2 ± 7.1% to 9.5 ± 5.4%) or Glut (peak = 1.3 

± 5.7% to 10.4 ± 5.6%; mean = 2.1 ± 6.6% to 8.3 ± 8.9%) were detected (see Table 4).
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Table 2 about here

Figure 2 about here 

In the VR condition, significant increases (p < 0.05) in CMJ height were detected at 30 s (5.9 

± 1.2%), 4 min (5.6 ± 1.8%), 8 min (6.5 ± 2.6%) and 12 min (5.3 ± 2.5%) time points compared 

with pre-intervention data (see Figure 2).  Significant increases (p < 0.05) were also observed 

in peak power at 30 s (4.7 ± 1.2%), 4 min (5.9 ± 1.3%), 8 min (4.4 ± 1.7%) and 12 min (4.8 ± 

1.7%) time points compared to pre-intervention data.  These changes in CMJ height and power 

were also statistically different to FWR (p < 0.05).  Similarly, significant increases (p < 0.05) 

were found in peak normalized RFD at 30 s (18.9 ± 7.8%), 4 min (12.9 ± 5.9%), 8 min (19.1 ± 

5.0%) and 12 min (16.0 ± 8.1%) compared to pre-intervention data.  However, no significant 

change (p > 0.05) in peak eccentric kinetic energy (0.4 ± 4.8% to 5.2 ± 4.8%) or impulse- (1.4 

± 1.5% to 4.6 ± 2.4%) or time-based (7.4 ± 11.7% to 13.0 ± 12.5%) asymmetry indexes, Kvert 

(6.6 ± 4.5% to 8.9 ± 3.7%) were found following the VR warm-up condition at any time point 

(see Table 2).    

Table 3 about here 

No significant change in peak hip (1.3 ± 1.3° to 1.9 ± 1.5°), knee (0.9 ± 2.9° to 4.1 ± 3.0°), 

ankle (0.9 ± 0.4° to 1.4 ± 0.7°) flexion angles were observed in VR at any time point. Similarly, 

no changes (p > 0.05) were found at any time point (see Table 3) in peak eccentric hip (0.2 ± 

2.2% to 2.5 ± 2.2%), knee (0.04 ± 1.7% to 2.6 ± 2.5%), ankle (0.1 ± 6.6% to 6.7 ± 8.7%) or 

concentric hip (1.5 ± 2.4% to 3.6 ± 2.1%) or ankle (1.1 ± 2.0% to 3.5 ± 2.1%) angular velocities 

or peak or mean eccentric EMG amplitudes for VL (peak = 0.5 ± 4.3% to 3.1 ± 4.3%, mean = 
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4.9 ± 6.0% to 9.2 ± 6.5%), VM (peak = 2.1 ± 4.6% to 9.6 ± 4.0%, mean = 4.9 ± 5.4% to 6.7 ± 

5.8%) or Glut (peak = 2.2 ± 6.3% to 4.6 ± 6.3%, mean = 3.5 ± 7.4% to 4.9 ± 6.5%).  However, 

a significant increase (p < 0.05) was found in peak concentric knee angular velocity at 30 s (3.1 

± 1.4%), 4 min (4.1 ± 1.7%), 8 min (3.2 ± 1.0%) and 12 min (3.1 ± 1.5%) and mean concentric 

VL EMG activity at 30 s (28.1 ± 10.5%), 4 min (31.5 ± 11.0%), 8 min (33.4 ± 15.9%) and 12 

min (27.5 ± 14.5%) compared to pre-intervention data.  No changes (p > 0.05) in mean 

concentric VM (3.7 ± 8.0% to 12.7 ± 8.6%) or Glut (0.3 ± 10.4% to 7.0 ± 7.5%) EMG or peak 

concentric VL (0.6 ± 5.8% to 4.5 ± 4.7%), VM (0.3 ± 5.1% to 9.2 ± 4.1%) or Glut (0.2 ± 9.2% 

to 7.1 ± 7.7%) EMG were observed at any time point (see Table 4).  

Table 4 about here 

Significant (p < 0.05) correlations were observed between the change in CMJ height (pre-

intervention to 8 min post-intervention, i.e. where the greatest mean increase in jump height 

occurred) and changes in peak power (r = 0.82) during VR.  No significant correlations (p > 

0.05) were found between change in CMJ height and changes in peak normalized RFD (r = 

0.27), peak knee angular velocity (r = -0.21), mean concentric VL EMG (r = 0.17) or peak 

eccentric kinetic energy (r = 0.32).

DISCUSSION

The primary aim of the present study was to assess the magnitude and time-course of changes 

in countermovement vertical jump (CMJ) performance after traditional free-weight (FWR) and 

variable (VR) resistance squat exercises were performed following a comprehensive task-

specific, warm-up routine.  The first hypothesis can be partially accepted as the lack of change 

in any measure following the FWR condition suggests that no additional benefit (i.e. 

Page 17 of 36



PAP/PAPE effect) was derived from the inclusion of intense loading from FWR exercise (i.e. 

the conditioning activity), contrary to the improvement in jump height following the use of 

elastic bands.  This finding contrasts those of previous studies where the performance of heavy 

squat lifts increased CMJ height,21,32 and other literature reporting an increase in tasks 

including sprint running performance.33  However, those previous studies either did not report 

the use of other warm-up activities or only included a light cardiovascular warm-up rather than 

a more comprehensive task-specific warm-up including progressively intense task-specific 

muscular contractions.  The current finding of a lack of effect of a back squat conditioning 

activity after a comprehensive task-specific warm-up (see Figure 2) is, however, consistent 

with a previous report of an absence of change in vertical jump performance when dynamic 

warm-up exercises were employed prior to a set of back squats.17  These data are indicative 

that a lack of a comprehensive task-specific warm-up may enable further augmentation of 

performance after squats were performed, but may be of limited relevance to athletes, strength 

trainers and recreational exercisers who would customarily perform a thorough warm-up. That 

is, the high-intensity conditioning activities might only increase performance when the warm-

up would otherwise be insufficient to promote maximal performance. Collectively, these 

findings indicate that the previously reported ‘potentiating’ effects of heavy free-weight back 

squat exercise on subsequent CMJ performance16,21 may be a consequence of study design, 

where the limited use of warm-up protocols provided an opportunity for further performance 

augmentation after the baseline tests.  Furthermore, inconsistencies in PAP responses12,16,17 

may depend on fatigue-potentiation or perseveration-potentiation interactions and their 

influence on subsequent performance therefore new strategies for designing warm-up protocols 

and optimal recovery periods following conditioning contractions are vital in order to induce a 

potentiation effect.   
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Despite FWR squat lifts having no effect on CMJ performance, a significant increase in jump 

height was achieved following the VR conditioning activity at all time points (30 s, 4 min, 8 

min and 12 min; see Figure 2), which suggests a prolonged ‘potentiating’ effect was evoked, 

i.e. post-activation performance enhancement; PAPE.9  Thus, the second experimental

hypothesis, that jump height would be increased following the VR intervention, can be 

accepted.  These data are consistent with a previous study34 in which box squats incorporating 

elastic band resistance acutely increased power output during subsequent CMJ tasks.  However, 

in the present study it was shown that this effect can be evoked even after completion of a 

comprehensive task-specific warm-up, which was not included in previous studies.  Although 

each maximal CMJ may possibly potentiate the next one, no significant improvement occurred 

in the FWR condition, therefore these jumps were unlikely to explain the increased 

performance in VR.  Previous studies showed that only seconds or a few minutes are needed 

to recover from a short bout of maximal-effort exercise (e.g. less than 1 min for recovery from 

a maximal squat35 or bench press lifts36), thus it is unlikely that fatigue is a factor influencing 

the findings of the present study as a significant increase was observed across all time points.  

The use of elastic bands reduces the effective load near the “sticking point” in the early 

concentric phase of the squat lift but then allows for greater loading later in the lift as the 

effective mechanical advantage is increased.2  The ability for muscles to operate closer to their 

maximum force capacity through a greater proportion of the lift may therefore enhance 

subsequent muscle force output and elicit a greater dynamic muscle performance (i.e. increase 

in CMJ height), even when a comprehensive task-specific warm-up is already completed.  

Collectively, these data indicate that the use of elastic bands, which alter the loading strategy 

during the lift, provides a more effective warm-up than either warm-up alone or warm-up that 

also includes traditional free-weight resistance exercises.  
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In the present study significant changes in force production (peak power and RFD; see Table 

2) at all time points in the VR warm-up condition were consistent with the changes in jump

height.  However, peak hip, knee and ankle, flexion angle, peak eccentric kinetic energy, the 

impulse- and time-based asymmetry indexes remained unchanged and no change was detected 

in Kvert (see Tables 2 and 3), which is consistent with previous research.30  Accordingly, 

changes in jump kinematics cannot explain the changes in force production or jump height.  

The third hypothesis, that both kinetic and kinematic parameters would be altered by elastic 

band-resisted squat lifts, can therefore only be partially accepted. The changes in peak jump 

power were significantly correlated with the changes in CMJ height, however a poor 

relationship was identified between changes in RFD and CMJ height. This latter finding is 

consistent with a previous report37 in which stretch-shortening cycle test performances were 

not statistically related to RFD measured during the test.  The poor relationship may be partly 

explained by the participants being well strength-trained yet relatively untrained in explosive 

power-based exercises, and thus unable to rapidly reach peak force.38  However, further 

research on power-trained athletes is needed to fully elucidate the importance of training status. 

A number of mechanisms relating to stretch-shorten cycle efficiency may have contributed to 

the increased jump height, including a more rapid muscle stretch resulting from force 

potentiation,3939 greater elastic energy storage in the muscle,40 an increased time of muscle 

activation,40,41 an augmented pre-load effect,42 force and stiffness augmentation from stretch 

reflexes,41 or changes in relative contributions of muscle and tendon allowing the muscle to 

operate at lower shortening speeds and over shorter distances.43  Whilst it is difficult to assess 

the effects of each, the peak eccentric kinetic energy and both impulse- and time-based 

asymmetry indexes remained unchanged after VR, indicating that the total energy available for 

storage in elastic structures (eccentric kinetic energy), the kinematic pattern adopted to make 
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use of it (asymmetry indexes),29 and the time for force application and likely contribution of 

stretch reflexes, were also unchanged.  Nonetheless, increases in peak power and concentric 

knee angular velocity were observed.  

Nonetheless, a more plausible explanation for the increase in force production, and thus jump 

height, may be found in the increased knee extensor muscle activity detected in the concentric 

phase (VL EMG increased 27.5-33.4% across time points; see Table 4).  Thus, the fourth 

hypothesis, that extensor muscle activity would be increased, can be accepted. The greater 

increase in EMG activity in VL than VM or Glut is consistent with previous reports of greater 

VL EMG in the concentric phase of a CMJ after both low- and moderate-intensity squat warm-

ups32 and would likely have resulted from an increased motor unit firing frequency.44  In fact, 

Nikolaidou et al.45 found that a greater jump height was achieved during CMJ compared to 

squat jump which was consistent with an increased VL activation during the push off phase.  

Increased phosphorylation of the myosin light chain leading to an increase in myofilament Ca2+ 

sensitivity and force output (i.e. classic PAP) may have contributed to the increase in CMJ, 

although it resolves completely within about 5 min11 thus its effect at 4 – 12 min would have 

been negligible.  Although other mechanisms such as increases in muscle temperature5 (not 

examined in the present study) may have contributed to the increase in jump height it remains 

likely that the change in muscle activation was the major factor influencing the improvement 

in CMJ performance.  The increased muscle activity and consequent increase in peak power 

output in the concentric phase would have allowed a greater jump height without changes in 

kinematics or stretch-shorten cycle efficiency (i.e. without changes in eccentric knee angular 

velocity, eccentric kinetic energy, impulse- and time-based asymmetry indexes or Kvert).  The 

most likely explanation for the finding is that the variation in muscle force requirements 

imposed by the use of elastic band resistance influenced muscle recruitment patterns and 
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ultimately increased concentric force output.19  The current findings hint at the possibility that 

manipulation of loading strategies during warm-up exercises might beneficially alter muscle 

recruitment amplitude or timing and result in greater performances than achieved through 

traditional high-intensity, task-specific warm-ups alone.  This hypothesis should be explicitly 

examined in future studies.  It is important to note that it was not possible to measure muscle 

temperatures in the current study. However, muscle temperature would likely have increased 

substantially during the comprehensive task-specific warm-up so temperature may have 

remained constant (i.e. in an optimum zone) for a longer time, and any further small increase 

in temperature from the conditioning activities would have been similar between conditions. 

This may have allowed the improved muscle activation to result in a greater jump performance 

and for the increased activation to persist for a longer time. Thus, although it remains to be 

explicitly examined in future, it can be considered unlikely that muscle temperature differences 

could explain the between-condition differences in jump performance.

PERSPECTIVE

The completion of brief, high-load free-weight squat exercise following a comprehensive task-

specific warm-up failed to alter CMJ height, force/power production or movement pattern.  

These findings are suggestive that the previously-observed ‘potentiating’ effect of squat 

exercise may be a consequence of limited warm-up. The beneficial effect of a free-weight squat 

strategy to potentiate the system may therefore, be minimal in athletic populations that typically 

perform high-intensity, task-specific warm-up routines prior to maximal exercise tasks.  

However, the use of elastic band resistance during these squats resulted in significant increases 

in jump height, peak power, peak concentric knee angular velocity and peak RFD, as well as 

increased VL EMG activity in the concentric (propulsive) phase of the jump, which did not 

return to baseline after 12 min despite a comprehensive task-specific warm-up being 
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completed.  The results suggest that the inclusion of tasks in which force-time parameters differ 

from the outcome task (CMJ in the current study) might evoke positive acute adaptations in 

addition to those achieved through warm-up alone.  Further research is required to determine 

whether similar effects are observed following different warm-up strategies and in different 

athletic tasks, as well as in other populations.
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TABLE AND FIGURE LEGENDS

Table 1.  Study design timeline.  Acronyms: CMJ = countermovement vertical jump; FWR = 

free-weight resistance; VR = variable resistance.

Table 2.  Kinetic measures of vertical jump performance across all time points following the 

free-weight resistance and elastic band warm-up conditions (values are reported as mean ± SE; 

*p < 0.05 compared to pre-intervention and FWR condition).  Acronyms: Pre = pre-

intervention; FWR = free-weight resistance; VR = variable resistance; Kvert = vertical stiffness; 

RFD = rate of force development.

Table 3.  Kinematic measures of vertical jump performance across all time points following 

the free-weight resistance and elastic band warm-up conditions (values are reported as mean 

± SE; *p < 0.05 compared to pre-intervention).  Acronyms: Pre = pre-intervention; FWR = 

free-weight resistance; VR = variable resistance; ECC = eccentric; CON = concentric.

Table 4.  Normalized mean and peak VL, VM and Glut EMG amplitudes measured during 

vertical jumps across all time points following free-weight resistance and elastic band warm-

up squat conditions (values are reported as mean ± SE; *p < 0.05 compared to pre-intervention 

and FWR condition).  Acronyms: VL = vastus lateralis; VM = vastus medialis; Glut = gluteus 

maximum; EMG = electromyogram; MVC = maximum voluntary contraction; FWR = free-

weight resistance; VR = variable resistance; ECC = eccentric; CON = concentric.
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Figure 1.  Exemplar data from a subject depicting CMJ height, ground reaction force, knee 

angular velocity, knee flexion angle and VL EMG activity at 8 min following the free-weight 

resistance and elastic band warm-up squat conditions.  VL = vastus lateralis; CMJ = 

countermovement vertical jump; FWR = free-weight resistance; VR = variable resistance.

Figure 2.  Mean countermovement vertical jump height following free-weight resistance and 

elastic band warm-up squat conditions.  *Significant increases (5.3-6.5%; p < 0.05) in vertical 

jump performance were achieved across all time points following the VR warm-up condition 

compared to pre-intervention and the FWR warm-up condition.  Pre = pre-intervention; FWR 

= free-weight resistance; VR = variable resistance.
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Table 1. Study design timeline. 

Acronyms: CMJ = countermovement vertical 

jump; FWR = free-weight resistance; VR = 

variable resistance. 

Task Time (min) 

5-min cycle 0-5.0

5 unloaded squats (1 s/ 1 s) 5.0-6.0 

5 unloaded squats (2 s/ 2 s) 6.0-7.0 

5 CMJs (70%) 7.5-8.5 

Single CMJs every 30 s (100%) 9.0-11.0 

CMJ Test 1 13.0-13-5 

FWR or VR squats 14.5-15.0 

CMJ Tests (2-5) 15.5, 19.5, 23.5, 27.5 
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Table 2.  Kinetic measures of vertical jump performance across all time points following the free-weight 
and variable resistance warm-up conditions (values are reported as mean ± SE; *p < 0.05 compared to 
pre-intervention and FWR condition).

Measure Condition Pre 30 s 4 min 8 min 12 min

Peak Power (W) FWR 49.3 ± 1.9 50.3 ± 1.5 50.8 ± 1.7 49.2 ± 2.2 50.3 ± 1.7

VR 49.0 ± 1.7 51.3 ± 1.8* 51.8 ± 1.6* 51.0 ± 1.7* 51.2 ± 1.7*

Peak Eccentric Kinetic 
Energy (J)

FWR 87.4 ± 7.7 95.8 ± 9.0 90.8 ± 9.4 90.3 ± 7.7 88.0 ± 9.0

VR 94.3 ± 8.0 93.6 ± 7.3 87.9 ± 7.2 88.8 ± 6.9 82.4 ± 5.9

Impulse asymmetry index 
(N∙s)

FWR 2.9 ± 0.1 2.8 ± 0.1 2.9 ± 0.1 2.9 ± 0.1 2.9 ± 0.1

VR 2.8 ± 0.1 2.9 ± 0.1 2.9 ± 0.1 2.9 ± 0.1 2.9 ± 0.1

Time asymmetry index (ms) FWR 1.5 ± 0.1 1.4 ± 0.2 1.5 ± 0.2 1.3 ± 0.2 1.2 ± 0.2

VR 1.4 ± 0.2 1.5 ± 0.2 1.1 ± 0.2 1.4 ± 0.2 1.2 ± 0.2

Kvert (N·m-1∙kg-1) FWR 70.8 ± 6.0 72.6 ± 3.8 70.5 ± 3.6 69.0 ± 3.7 72.0 ± 3.8

VR 69.9 ± 5.0 73.3 ± 3.9 73.5 ± 4.5 74.6 ± 3.7 74.4 ± 4.5

Peak normalized RFD 
(N∙sˉ¹)

FWR 134.2 ± 11.3 147.1 ± 12.2 132.5 ± 10.8 141.8 ± 13.5 118.2 ± 7.5

VR 126.1 ± 6.7 149.8 ± 12.8* 143.2 ± 11.7* 149.2 ± 9.0* 147.7 ± 13.7*

Acronyms: Pre = pre-intervention; FWR = free-weight resistance; VR = variable resistance; Kvert = vertical 
stiffness; RFD = rate of force development.
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Table 3.  Kinematic measures of vertical jump performance across all time points following the free-weight 

and variable resistance warm-up conditions (values are reported as mean ± SE; *p < 0.05 compared to pre-

intervention).   

Measure Mode Condition Pre 30 s 4 min 8 min 12 min 

Peak hip angular 

velocity (°·s
-1
) 

ECC FWR 301.1 ± 9.5 302.2 ± 10.0 294.4 ± 9.8 291.4 ± 6.9 292.8 ± 9.2 

VR 298.2 ± 7.1 305.2 ± 8.3 300.2 ± 8.3 302.6 ± 8.8 297.3 ± 8.7 

CON FWR 584.6 ± 15.6 605.4 ± 18.8 591.9 ± 20.2 575.7 ± 20.7 576.2 ± 15.8 

VR 572.2 ± 17.1 591.9 ± 20.2 593.0 ± 22.1 588.2 ± 19.3 580.8 ± 21.7 

Peak knee angular 

velocity (°·s
-1
) 

ECC FWR 343.2 ± 13.6 341.0 ± 11.4 332.6 ± 11.9 343.8 ± 13.7 340.5 ± 14.3 

VR 352.1 ± 14.3 364.9 ± 15.7 353.5 ± 13.9 363.0 ± 15.0 347.5 ± 16.6 

CON FWR 956.4 ± 23.6 971.6 ± 24.6 969.3 ± 26.7 939.6 ± 27.9 959.6 ± 25.1 

VR 937.0 ± 23.8 966.0 ± 28.8* 975.7 ± 29.7* 966.9 ± 26.2* 964.2 ± 24.5* 

Peak ankle angular 

velocity (°·s
-1
) 

ECC FWR 108.1 ± 10.0 117.6 ± 12.0 109.7 ± 12.2 112.0 ± 10.9 114.4 ± 10.8 

VR 121.1 ± 12.8 118.7 ± 9.8 120.3 ± 9.0 112.8 ± 7.1 104.5 ± 5.0 

CON FWR 745.4 ± 23.4 733.7 ± 25.5 728.2 ± 18.9 707.9 ± 25.3 721.5 ± 27.0 

VR 717.9 ± 21.3 723.6 ± 22.2 731.7 ± 23.6 735.1 ± 28.1 739.4 ± 19.1 

Peak hip flexion 

angle (°) 

FWR 79.3 ± 2.0 82.7 ± 2.1 81.8 ± 1.7 82.1 ± 2.4 81.8 ± 2.2 

VR 81.5 ± 1.9 83.2 ± 1.4 83.3 ± 1.9 83.4 ± 1.5 82.8 ± 1.5 

Peak knee flexion 

angle (°) 

FWR 71.7 ± 2.9 73.3 ± 3.0 71.1 ± 2.8 72.0 ± 2.7 71.9 ± 3.3 

VR 71.8 ± 3.5 72.6 ± 3.4 74.2 ± 3.3 75.2 ± 2.8 75.4 ± 3.5 

Peak ankle flexion 

angle (°) 

FWR 32.7 ± 1.6 32.6 ± 1.4 32.7 ± 1.4 33.0 ± 1.4 33.2 ± 1.4 

VR 33.8 ± 1.6 34.7 ± 1.6 34.8 ± 1.6 35.2 ± 1.6 34.8 ± 1.8 

Acronyms: Pre = pre-intervention; FWR = free-weight resistance; VR = variable resistance; ECC = 

eccentric; CON = concentric.
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Table 4.  Normalized mean and peak VL, VM and Glut EMG amplitudes measured during vertical 

jumps across all time points following free-weight and variable resistance warm-up squat conditions 

(values are reported as mean ± SE; *p < 0.05 compared to pre-intervention and FWR condition).  

Measure Mode Condition Pre 30 s 4 min 8 min 12 min 

Mean VL EMG 

(%MVC) 

ECC FWR 31.9 ± 2.1 31.5 ± 3.4 30.5 ± 3.0 30.0 ± 2.0 29.5 ±2.9 

VR 28.5 ± 2.1 30.2 ± 2.2 31.9 ± 2.3 31.5 ± 1.8 32.0 ± 2.2 

CON FWR 82.4 ± 6.1 83.9 ± 6.4 78.4 ± 8.5 72.5 ± 4.6 73.4 ± 6.0 

VR 85.4 ± 7.8 108.2 ± 13.3* 110.2 ± 12.2* 107.5 ± 10.5* 102.6 ± 9.4* 

Peak VL EMG 

(%MVC) 

ECC FWR 89.2 ± 6.7 94.7 ± 8.0 90.4 ± 6.9 85.0 ± 6.7 84.0 ± 6.0 

VR 91.6 ± 4.9 95.0 ± 8.0 94.2 ± 6.1 90.7 ± 4.7 90.6 ± 5.9 

CON FWR 112.4 ± 8.0 123.7 ± 9.6 116.9 ± 7.1 112.8 ± 6.7 112.2 ± 6.3 

VR 114.3 ± 5.8 115.8 ± 10.2 117.4 ± 7.6 111.2 ± 6.6 108.1 ± 6.6 

Mean VM EMG 

(%MVC) 

ECC FWR 36.3 ± 2.7 33.9 ± 4.1 32.6 ± 3.3 32.2 ± 2.6 33.0 ± 3.4 

VR 37.9 ± 3.8 40.2 ± 3.8 38.1 ± 3.3 39.9 ± 2.9 38.1 ± 3.3 

CON FWR 94.9 ± 5.0 95.3 ± 10.9 85.1 ± 8.4 85.1 ± 6.4 87.7 ± 7.3 

VR 90.2 ± 9.2 96.0 ± 7.9 94.7 ± 7.5 88.8 ± 5.9 87.2 ± 6.2 

Peak VM EMG 

(%MVC) 

ECC FWR 98.6 ± 7.9 96.9 ± 7.4 92.9 ± 6.7 88.0 ± 6.1 89.0 ± 6.1 

VR 111.3 ± 9.5 114.4 ± 11.2 108.1 ± 10.2 104.7 ± 8.1 97.3 ± 6.7 

CON FWR 132.0 ± 12.2 128.7 ± 11.5 120.5 ± 9.5 118.2 ± 8.6 118.8 ± 9.1 

VR 150.6 ± 12.8 149.0 ± 14.4 143.4 ± 12.5 140.8 ± 11.8 127.7 ± 8.9 

Mean Glut EMG 

(%MVC) 

ECC FWR 20.0 ± 1.9 22.4 ± 2.8 21.3 ± 2.3 19.7 ± 1.7 21.2 ± 1.9 

VR 21.7 ± 2.5 23.2 ± 2.6 22.5 ± 2.4 22.5 ± 2.2 21.7 ± 2.0 

CON FWR 81.1 ± 10.2 84.4 ± 14.8 83.9 ± 12.1 78.6 ± 8.7 75.1 ± 9.2 

VR 84.4 ± 14.0 87.1 ± 14.2 78.3 ± 10.1 77.4 ± 8.5 76.8 ± 9.8 

Peak Glut EMG 

(%MVC) 

ECC FWR 72.6 ± 7.0 78.3 ± 7.5 76.4 ± 7.2 74.6 ± 7.1 71.7 ± 6.9 

VR 79.1 ± 9.4 82.0 ± 9.5 76.7 ± 8.9 74.7 ± 5.5 71.7 ± 7.3 

CON FWR 103.4 ± 10.8 111.3 ± 14.0 112.7 ± 12.5 103.3 ± 12.1 103.1 ± 9.6 

VR 115.9 ± 9.9 118.5 ± 10.7 110.8 ± 11.7 100.3 ± 7.9 99.7 ± 7.6 

Acronyms: VL = vastus lateralis; VM = vastus medialis; Glut = gluteus maximum; EMG = 

electromyogram; MVC = maximum voluntary contraction; FWR = free-weight resistance; VR = 

variable resistance; ECC = eccentric; CON = concentric. 
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