66 research outputs found

    Increases in temperature and nutrient availability positively affect methane-cycling microorganisms in Arctic thermokarst lake sediments

    Get PDF
    Arctic permafrost soils store large amounts of organic matter that is sensitive to temperature increases and subsequent microbial degradation to methane (CH 4 ) and carbon dioxide (CO 2 ). Here, we studied methanogenic and methanotrophic activity and community composition in thermokarst lake sediments from Utqiag vik (formerly Barrow), Alaska. This experiment was carried out under in situ temperature conditions (4 degrees C) and the IPCC 2013 Arctic climate change scenario (10 degrees C) after addition of methanogenic and methanotrophic substrates for nearly a year. Trimethylamine (TMA) amendment with warming showed highest maximum CH 4 production rates, being 30% higher at 10 degrees C than at 4 degrees C. Maximum methanotrophic rates increased by up to 57% at 10 degrees C compared to 4 degrees C. 16S rRNA gene sequencing indicated high relative abundance of Methanosarcinaceae in TMA amended incubations, and for methanotrophic incubations Methylococcaeae were highly enriched. Anaerobic methanotrophic activity with nitrite or nitrate as electron acceptor was not detected. This study indicates that the methane cycling microbial community can adapt to temperature increases and that their activity is highly dependent on substrate availability

    Methane Feedbacks to the Global Climate System in a Warmer World

    Get PDF
    Methane (CH4) is produced in many natural systems that are vulnerable to change under a warming climate, yet current CH4 budgets, as well as future shifts in CH4 emissions, have high uncertainties. Climate change has the potential to increase CH4 emissions from critical systems such as wetlands, marine and freshwater systems, permafrost, and methane hydrates, through shifts in temperature, hydrology, vegetation, landscape disturbance, and sea level rise. Increased CH4 emissions from these systems would in turn induce further climate change, resulting in a positive climate feedback. Here we synthesize biological, geochemical, and physically focused CH4 climate feedback literature, bringing together the key findings of these disciplines. We discuss environment-specific feedback processes, including the microbial, physical, and geochemical interlinkages and the timescales on which they operate, and present the current state of knowledge of CH4 climate feedbacks in the immediate and distant future. The important linkages between microbial activity and climate warming are discussed with the aim to better constrain the sensitivity of the CH4 cycle to future climate predictions. We determine that wetlands will form the majority of the CH4 climate feedback up to 2100. Beyond this timescale, CH4 emissions from marine and freshwater systems and permafrost environments could become more important. Significant CH4 emissions to the atmosphere from the dissociation of methane hydrates are not expected in the near future. Our key findings highlight the importance of quantifying whether CH4 consumption can counterbalance CH4 production under future climate scenarios

    Quantifying Potential N Turnover Rates in Hypersaline Microbial Mats by Using <sup>15</sup>N Tracer Techniques

    No full text
    Microbial mats, due to stratification of the redox zones, have the potential to include a complete N cycle; however, an attempt to evaluate a complete N cycle in these ecosystems has not been yet made. In this study, the occurrence and rates of major N cycle processes were evaluated in intact microbial mats from Elkhorn Slough, Monterey Bay, CA, USA, and Baja California Sur, Mexico, under oxic and anoxic conditions using 15N-labeling techniques. All the major N transformation pathways, with the exception of anammox, were detected in both microbial mats. Nitrification rates were found to be low at both sites for both seasons investigated. The highest rates of ammonium assimilation were measured in Elkhorn Slough mats in April and corresponded to high in situ ammonium concentrations in the overlying water. Baja mats featured higher ammonification than ammonium assimilation rates, and this, along with their higher affinity for nitrate compared to ammonium and low dissimilatory nitrate reduction to ammonium rates, characterized their differences from Elkhorn Slough mats. Nitrogen fixation rates in Elkhorn Slough microbial mats were found to be low, implying that other processes, such as recycling and assimilation from water, are the main sources of N for these mats at the times sampled. Denitrification in all the mats was incomplete, with nitrous oxide as the end product and not dinitrogen. Our findings highlight N cycling features not previously quantified in microbial mats and indicate a need for further investigations of these microbial ecosystems. IMPORTANCE Nitrogen is essential for life. The nitrogen cycle on Earth is mediated by microbial activity and has had a profound impact on both the atmosphere and the biosphere throughout geologic time. Microbial mats, present in many modern environments, have been regarded as living records of the organisms, genes, and phylogenies of microbes, as they are one of the most ancient ecosystems on Earth. While rates of major nitrogen metabolic pathways have been evaluated in a number of ecosystems, they remain elusive in microbial mats. In particular, it is unclear what factors affect nitrogen cycling in these ecosystems and how morphological differences between mats impact nitrogen transformations. In this study, we investigate nitrogen cycling in two microbial mats having morphological differences. Our findings provide insight for further understanding of biogeochemistry and microbial ecology of microbial mats.</p

    Metagenomic potential for and diversity of N-cycle driving microorganisms in the Bothnian Sea sediment

    Get PDF
    The biological nitrogen cycle is driven by a plethora of reactions transforming nitrogen compounds between various redox states. Here, we investigated the metagenomic potential for nitrogen cycle of the in situ microbial community in an oligotrophic, brackish environment of the Bothnian Sea sediment. Total DNA from three sediment depths was isolated and sequenced. The characterization of the total community was performed based on 16S rRNA gene inventory using SILVA database as reference. The diversity of diagnostic functional genes coding for nitrate reductases (napA;narG), nitrite:nitrate oxidoreductase (nxrA), nitrite reductases (nirK;nirS;nrfA), nitric oxide reductase (nor), nitrous oxide reductase (nosZ), hydrazine synthase (hzsA), ammonia monooxygenase (amoA), hydroxylamine oxidoreductase (hao), and nitrogenase (nifH) was analyzed by blastx against curated reference databases. In addition, Polymerase chain reaction (PCR)-based amplification was performed on the hzsA gene of anammox bacteria. Our results reveal high genomic potential for full denitrification to N2, but minor importance of anaerobic ammonium oxidation and dissimilatory nitrite reduction to ammonium. Genomic potential for aerobic ammonia oxidation was dominated by Thaumarchaeota. A higher diversity of anammox bacteria was detected in metagenomes than with PCR-based technique. The results reveal the importance of various N-cycle driving processes and highlight the advantage of metagenomics in detection of novel microbial key players

    Quantifying Potential N Turnover Rates in Hypersaline Microbial Mats by Using N-15 Tracer Techniques

    No full text
    Contains fulltext : 236460.pdf (Publisher’s version ) (Closed access
    corecore