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Abstract Methane (CHy) is produced in many natural systems that are vulnerable to change under a
warming climate, yet current CH, budgets, as well as future shifts in CH, emissions, have high uncertainties.
Climate change has the potential to increase CH, emissions from critical systems such as wetlands, marine and
freshwater systems, permafrost, and methane hydrates, through shifts in temperature, hydrology, vegetation,
landscape disturbance, and sea level rise. Increased CH, emissions from these systems would in turn induce
further climate change, resulting in a positive climate feedback. Here we synthesize biological, geochemical,
and physically focused CH,4 climate feedback literature, bringing together the key findings of these disciplines.
We discuss environment-specific feedback processes, including the microbial, physical, and geochemical
interlinkages and the timescales on which they operate, and present the current state of knowledge of CH,
climate feedbacks in the immediate and distant future. The important linkages between microbial activity and
climate warming are discussed with the aim to better constrain the sensitivity of the CH,4 cycle to future climate
predictions. We determine that wetlands will form the majority of the CH, climate feedback up to 2100.
Beyond this timescale, CH,4 emissions from marine and freshwater systems and permafrost environments
could become more important. Significant CH, emissions to the atmosphere from the dissociation of methane
hydrates are not expected in the near future. Our key findings highlight the importance of quantifying
whether CH4 consumption can counterbalance CH4 production under future climate scenarios.

Plain Language Summary Methane is a powerful greenhouse gas, second only to carbon dioxide
in its importance to climate change. Methane production in natural environments is controlled by factors that
are themselves influenced by climate. Increased methane production can warm the Earth, which can in
turn cause methane to be produced at a faster rate - this is called a positive climate feedback. Here we describe
the most important natural environments for methane production that have the potential to produce a
positive climate feedback. We discuss how these feedbacks may develop in the coming centuries under
predicted climate warming using a cross-disciplinary approach. We emphasize the importance of considering
methane dynamics at all scales, especially its production and consumption and the role microorganisms play
in both these processes, to our understanding of current and future global methane emissions. Marrying
large-scale geophysical studies with site-scale biogeochemical and microbial studies will be key to this.

1. Methane in the Global Carbon Cycle

Methane (CHj,) is the most abundant reduced compound in the atmosphere and plays an important role in
the Earth’s carbon (C) cycle. This cycle consists of continuous transformations of C between the organic and
inorganic pools in the atmosphere, terrestrial biosphere, hydrosphere, and geosphere. Atmospheric carbon
dioxide (CO,), the fully oxidized form of C, is fixed by the terrestrial and marine biosphere. During the decay
of organic matter, C bound in this biomass can be converted to CH, depending on environmental conditions.
CH,4 will eventually be oxidized back to CO,, either in terrestrial and aquatic zones or in the atmosphere.

The fraction of the produced CH, that enters the atmosphere, where it acts as a powerful greenhouse gas
(GHG), depends conceptually on three factors: the production rate, the rate of transport from the region of
production/storage to the atmosphere, and the rate of consumption along this transport pathway
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Figure 1. Conceptual illustration of CH4 production and consumption prior to atmospheric release; all microbial conversion processes are shown in italics.Complex
organic matter is degraded by microorganisms in anoxic environments by a multistep process including hydrolysis, fermentation, homoacetogenesis, and syntrophic
acetate oxidation, leading to CO, and CH4 as end products. The CH, diffuses upward through the soil/sediment layer where it can be oxidized by (an)aerobic
methanotrophs. Here a theoretical distribution of available electron acceptors based on their electron potential is shown; the extent of the electron acceptor zones
will vary between different environments. Part of this CH,4 can eventually reach the atmosphere. Some of the CH,4 can be released via plants or ebullition; note
that these pathways of CH,4 release can also occur in aquatic environments (not shown). The vegetation represents vascular plants, which provide a direct pathway of

vertical CHy release via aerenchyma.

(Figure 1). These factors lead to fluctuations in CH, emissions, which have affected atmospheric CH,
concentrations over glacial-interglacial cycles (section 1.2). Fluctuations in CH4 emissions can form strong
positive feedbacks to current and future climate warming. The other key control on atmospheric CH,
concentrations is its removal rate, primarily its reaction with the hydroxyl radical (OH; see section 1.3),
which approximately, but not perfectly, balances CH,; emissions. Variations in the oxidation capacity of the
atmosphere (primarily by OH) have a direct impact on CH, levels (McNorton, Chipperfield, et al., 2016;
Rigby et al., 2017; Turner et al.,, 2017); these atmospheric feedbacks are not reviewed here.

In this review, we focus only on natural CH4 emissions and how these will change under current and future
warming. This includes the potential contribution of physical, geochemical, and biological feedbacks of CH,4
to the global climate system. We explore the role of environmental controls on CH, emissions and how these
may change across a range of the most critical natural environments. The underlying concepts are first
described (sections 1-3), before being discussed in the context of key source processes and regions: wetlands
(section 4), marine and freshwater systems (section 5), permafrost regions (section 6), and methane hydrates
(section 7). In particular, we focus on the role of microbial processes in CH4 production and consumption and
examine to what degree these hold the key to global CH, feedbacks in the future and over what timescales.
Microbial processes are often treated as a “black box” in geophysical and geochemical studies; therefore, in
section 2 we present the current state of knowledge regarding the primary microbial actors in the global CH,4
cycle as a reference point for those less familiar with the microbial literature. The final section (section 8)
synthesizes the global CH, feedback and the timescales on which its different elements may operate; we also
identify knowledge gaps and suggest pathways toward future research. We include a glossary at the end that
defines the key terms used throughout this review.

1.1. Radiative Effects of Atmospheric Methane

CH, is a major anthropogenic GHG, second only to CO, (Myhre et al., 2013). It strongly absorbs infrared radia-
tion in two fundamental bands at wavelengths of 3.3 um and 7.7 um, which are related to the stretching and
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Figure 2. Past and recent variations in the atmospheric CH,4 concentrations, demonstrating both the sudden rise in recent history and the plateau between 1999 and
2006, the causes of which have been much discussed in recent publications (see section 1.3). The inset shows a magnification of the direct atmospheric measure-
ments from 1984 to 2015, and the dashed black line is a 12 month running mean fit. Data sources: black—data set from the EPICA Dome C ice core record (data
from IGBP PAGES/World Data Center for Paleoclimatology, Data Contribution Series # 2008-054) (Loulergue et al., 2008); blue—merged data set from the Law Dome
ice core and firn measurements and Cape Grim atmospheric measurements (Etheridge et al., 1998; Ferretti et al., 2005; MacFarling Meure et al., 2006; Trudinger, 2002)
(data from IGBP PAGES/World Data Center for Paleoclimatology, Data Contribution Series # 2010-070); and red—global average CH4 mole fraction from direct
atmospheric measurements (Tsutsumi et al., 2009) (data from World Date Center for Greenhouse Gases, WMO Greenhouse Gas Bulletin, No.12, 2016).

bending modes of the C-H bond. Although atmospheric concentrations of CH, are about 200 times lower
than CO,, its global warming potential (GWP) is 28 over a 100 year time horizon and 84 over a 20 year
time horizon (Myhre et al., 2013). It is important to consider the time horizon because of the relatively
short lifetime of CH,; in the atmosphere. The increase in atmospheric CH4; concentrations since
preindustrial times has resulted in a direct radiative forcing since 1750 of about 0.5 W/m? (Myhre et al,,
2013). Estimates of the GWP of CH, are still evolving, with recent work suggesting that the radiative
forcing of CH4 from 1750 to 2011 may have been 25% higher than the 2013 Intergovernmental Panel on
Climate Change (IPCC) estimates (Etminan et al., 2016).

CH, also affects the abundance of other important GHGs due to its important role in atmospheric chemistry
(Fiore et al., 2002; Thompson & Cicerone, 1986). First, CH, oxidation leads to the photochemical formation of
the greenhouse gas ozone (Os). Second, in the stratosphere, CH, oxidation produces water vapor (H,0), and
the corresponding increase in stratospheric H,O contributes to radiative forcing. Finally, after oxidation, the C
atom from the original CH, molecule ends up in the form of the main anthropogenic greenhouse gas, carbon
dioxide (CO,) (Myhre et al., 2013). Taking these “climate-carbon feedbacks” into account, the GWP of CH, rises
to 34 over a 100 year timeframe and 86 over a 20 year timeframe. The total change in radiative forcing since
1750 that can be attributed to CH, emissions is therefore about 1 W/m? at present (Myhre et al, 2013) or
roughly 60% of the radiative forcing of CO,. Further details on the residence time of CH, and its radiative for-
cing can be found in the fifth assessment report of the IPCC (Myhre et al., 2013) and O’Connor et al. (2010).

1.2. Past Trends in Atmospheric Methane

Past atmospheric CH,4 concentrations have been reliably estimated from air trapped in polar firn and ice cores
(Wolff & Spahni, 2007). The oldest available ice core record to date was drilled at the Dome C site in East
Antarctica, covering the last 800,000 years with an average age resolution at its base of + 550 years
(Loulergue et al., 2008) (Figure 2). Recent trends in Late Holocene and Anthropocene CH, concentrations
can be determined in ice cores drilled at locations with high accumulation rates on the polar ice sheets
(MacFarling Meure et al.,, 2006), from firn ice (e.g., Battle et al., 1996; Sapart et al, 2013), or from high-
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resolution ice cores in mountain glaciers outside the polar regions; these have much lower age uncertainty
ranges, on the scale of decades (e.g., Hou et al., 2013). From these measurements, it is well established that
throughout the middle to late Pleistocene, atmospheric CH,; concentrations stayed within the range of
300-800 ppb (Figure 2). Milankovitch cycles were the main control on this variability in atmospheric CH4 con-
centrations, with the dominant factor being the 100,000 year orbital cycle between 800,000 and 400,000 years
ago (Loulergue et al., 2008). The 23,000 year orbital insolation cycle is more important from 400,000 to
5,000 years ago (Ruddiman, 2003). This correlation between CH,; and 30°N summer solar insolation driven
by orbital changes breaks up in the mid-Holocene, about 5,000 years ago (Ruddiman, 2003). This has been
attributed to early human activities, in particular rice agriculture, impacting the global CH, budget (Fuller
et al,, 2011; Ruddiman, 2003; Ruddiman et al., 2008). However, Singarayer et al. (2011) suggest that the late
Holocene CH, increase can be explained by orbitally induced changes of seasonal precipitation from the
Southern Hemisphere tropics. Precise measurements of the interpolar gradient of CH, over the late preindus-
trial Holocene (since about 800 B.C.E.) from air trapped in Greenland and Antarctic ice cores suggest that the
increase of more than 100 ppb during this period has both natural and anthropogenic components (Mitchell
etal, 2013).

With the onset of the industrial revolution in the late 1700s, the 300-800 ppb range of CH4 concentrations
documented for the last 800,000 years was disrupted by a dramatic anthropogenic-driven increase to more
than 1800 ppb (see section 1.3 and Figure 2).

The glacial periods of the past 800,000 years were characterized by low atmospheric CH; concentrations,
while higher concentrations were seen during interglacials (Past Interglacials Working Group of PAGES,
2016). In a direct comparison between Greenland and Antarctic ice cores, though, an asynchronous pattern
can be observed in the 5'20 records (used as a proxy for temperature) between warming and cooling events
in both hemispheres. In the Northern Hemisphere, Dansgaard-Oeschger events are phases of rapid warming
of 6-8°C occurring within a few decades (Long & Stoy, 2013), followed by drastic temperature drops (Brook
et al.,, 2005; EPICA Community Members, 2006). In contrast, the Antarctic ice core data suggest the onset of
cooling phases in the Southern Hemisphere during Northern Hemisphere Dansgaard-Oeschger warming
events (Alley, 2000; Stenni et al., 2011). This out of phase shift of climate events in both polar regions is
referred to as the bipolar seesaw phenomenon, which is well documented in §'0 time series. The ice core
records of atmospheric CH,4 are in phase in both hemispheres, with an error range of a couple of hundred
years (Barker et al., 2011). This reliable pattern is the reason why cross-hemispherical ice core comparisons
of 8'80 records are based on methane synchronization (Pedro et al., 2011).

Another characteristic of atmospheric CH,4 concentrations during interglacials in Antarctica is that they follow
temperature trends in the Antarctic record much more closely than CO, concentrations, which tend to have a
significant lag in their correlation with paleotemperatures (Severinghaus & Brook, 1999). Atmospheric CH,
responded to Dansgaard-Oeschger warming events by increasing relatively quickly (within 100 years)
(Brook et al., 1996; Fllickiger et al., 2004), which has been attributed to increased emissions from Northern
Hemisphere wetland CH, sources (Déllenbach et al., 2000; Wolff & Spahni, 2007). An interpolar gradient
between CH,; concentrations in Greenland and Antarctic ice core records reflects the dominance of CH,
sources in the Northern Hemisphere compared to the Southern Hemisphere (Déllenbach et al., 2000), which
was likely due to higher CH, emission from northern wetlands in this case (Wolff & Spahni, 2007).

CH, sources can also be attributed using the isotopic composition of CH,. For example, 8'3C values of CH,
recorded in Antarctic snow and ice in 1850 were lighter (—48.5%o) (Sowers et al., 2005) than current atmo-
spheric CH4 (—47.3%o) (Schaefer et al., 2016). This '>C enrichment of atmospheric CH, is the result of anthro-
pogenic fossil fuel-derived CH, emissions with relatively high '>C content (Wolff & Spahni, 2007).
Measurements of deuterium (*H) (Sowers, 2006) and radiocarbon (**C) (Petrenko et al., 2009, 2017) content
of ice core CH,4 suggest that methane hydrates did not contribute to increased CH, emissions during the last
glacial termination (24,000 to 8,000 years ago), including the rapid Younger Dryas-preboreal warming event
(~11,600 years ago). This supports the conclusions from assessments of the potential future impacts of
methane hydrate release under a warming climate (see section 7).

However, it is still debatable to what extent changes in atmospheric CH,4 levels were a driver of, or a response
to, paleoclimate changes and if they were a major contributor to climate feedbacks. In addition, it has been
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difficult to clearly attribute change in CH, observed from air trapped in ice cores to individual processes using
isotope information because shifts in CH, emissions do not necessarily coincide with shifts in CH4 sources
(Moller et al., 2013). This is likely because different drivers of CH,4 release and its isotopic signature can change
with time, and simultaneous shifts in sources (e.g., one source increasing while another decreases) do not
necessarily result in a significant change in net CH, emissions to the atmosphere (Mdller et al., 2013;
Sowers, 2006). For example, the growth of ice sheets over boreal wetlands likely reduced high-latitude
Northern Hemisphere emissions, while the expansion of tropical wetlands onto recently exposed continental
shelves following sea level decline (due to water being locked up in the growing ice sheets) likely increased
CH,4 emissions in the tropics. This may have shifted the isotopic composition (3'°C and 8%H) of wetland-
derived CH,4 during the last 160,000 years. However, the impacts of these and other drivers of the isotopic
signature of CH,4 (such as the extent of methane oxidation following its production—see section 2.2—or
the ratio of different metabolic pathways of C fixation in the plants that form the organic matter from which
CH, is produced) on overall shifts in the isotopic composition of atmospheric CH, are poorly understood
(Moller et al., 2013; Sowers, 2006; Wolff & Spahni, 2007).

Due to a lack of long-term CH,4 records, it is difficult to demonstrate that CH, has altered the global climate
prior to CH, ice core records. Nevertheless, specific shifts in global climate have been linked to large-scale
CH, release events by the use of indirect proxy information, most importantly the C isotopic composition
in sedimentary records; this is based on atmospheric CH, being strongly depleted in '*C (e.g., Frieling
et al, 2016). One such example is the global climate warming event of 5-8°C at the onset of the
Paleocene-Eocene boundary, also known as the Paleocene-Eocene Thermal Maximum (PETM), which has
been linked to the destabilization of CH4 hydrates (Dickens et al., 1995, 1997) (section 7), although the causes
of this warming period are much debated (Bowen et al., 2015; DeConto et al., 2012; Pagani et al., 2006). A shift
in the §'3C isotopic composition of organic C and carbonates in sedimentary records that cover this period
suggests an increased release of CH, with a depleted §'3C signature to the atmosphere to have been a
possible driver of the high temperatures during the PETM (Bains et al.,, 2000). Due to the short atmospheric
lifetime of CH,4, the warming associated with this event would have been caused by CO, that is formed from
the oxidation of the large volume of released CH,, rather than direct atmospheric loading of CH, (Bains et al.,
2000). Therefore, the fundamental role of CH, as the direct driver of this warming event is not clear (Bowen
etal, 2015; DeConto et al., 2012). The lack of a long-term CH, archive or an effective proxy makes direct links
of CH,4 to past climate forcing difficult.

1.3. Recent Trends in Atmospheric Methane

The spatial and temporal evolution of atmospheric CH,; has been monitored in great detail over the past
decades by a large network of surface stations (Dlugokencky et al., 1998, 2003, 2009) and aircraft observations
(e.g., Schuck et al,, 2012) and has recently been augmented by satellites (Frankenberg et al., 2008; Jacob et al.,
2016). This global observation network consists of 31 global stations and 400 regional stations providing in
situ measurements, often with a suite of other trace gases (Ciais et al., 2014). These measurements are tradi-
tionally done with gas chromatography but are gradually being replaced by cavity ring-down spectroscopy.
These stations provide the backbone of the analysis of global trends in CH,4. Total atmospheric column
observations are provided by the Total Carbon Column Observing Network (TCCON), which is a network of
ground-based Fourier Transform Spectrometers recording direct solar spectra in the near-infrared region.
This can be converted into precise measurements of the total column concentration of CH4, among other trace
gases. The TCCON also provides a bridge to a new generation of satellites (Orbiting Carbon Observatory, or
0OCO-2, the Greenhouse Gases Observing Satellite, or GOSAT, and the Tropospheric Monitoring Instrument,
or TROPOMI), which provide global coverage, operating in the infrared absorption bands of CH,. These satellite
measurements are less accurate than the in situ network but provide wider and more regular coverage.

Recent monitoring of atmospheric CH,4 has revealed several puzzling and unexpected temporal variations in
atmospheric CH, concentrations (Figure 2). After a more than twofold increase over the industrial period, the
growth rate of atmospheric CH, concentrations gradually declined during the 1990s, leading to relatively
stable concentrations after 2000 (Dlugokencky et al., 1998, 2003, 2009). This was followed by a renewed
increase since 2007 (Nisbet et al., 2014; Schaefer et al.,, 2016). The roles of both natural and anthropogenic
sources, and variations in the atmospheric CH, sink, have been controversially discussed in a large number
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of studies over the past years, primarily centering around debate over biogenic versus fossil CH, sources.
These include the balancing of sources and sinks (Bousquet et al., 2006; Dlugokencky et al., 1994, 1998, 2003;
Khalil & Rasmussen, 1993), and increases in anthropogenic CH,; emissions (Bergamaschi et al, 2013;
Bousquet et al., 2006; Dlugokencky et al., 2011; Franco et al., 2016; Schaefer et al., 2016; Turner et al.,, 2016), espe-
cially agriculture (Nisbet et al., 2016; Schaefer et al., 2016), or fossil fuel emissions (Worden et al.,, 2017). Short-
term increases in Arctic emissions (Dlugokencky et al., 2009), and decreases (Monteil et al., 2011) and increases
in wetland emissions (Bousquet et al., 2006, 2011; Schaefer et al., 2016), particularly the growth of tropical wet-
lands emissions (Bergamaschi et al., 2013; Bousquet et al,, 2011; Dlugokencky et al., 1998, 2009; Nisbet et al,,
2016; Pison et al., 2013), have also been suggested. Tropical wetlands are the most common natural source
cited to explain the recent rise in atmospheric CH, concentrations and are also one of the least well-constrained
natural CH,4 sources, primarily due to a lack of observational data on the extent of wetlands in the tropics
(Melton et al.,, 2013). Most recently, wetlands were suggested to have responded in line with predicted climate
change impacts on wetland CH,4 emissions, but this change in emissions likely did not play an important role in
the increase of atmospheric CH, since 2007 (Poulter et al.,, 2017). So while some changes to natural CH, emis-
sions may have been in response to climate warming, climate-related trends are not clear in most studies of
recent atmospheric CH, dynamics. However, this topic is hotly debated and the science is rapidly evolving, with
a recent study suggesting that decreased CH4 emissions from biomass burning since 2007 could allow for the
increases in both biogenic and anthropogenic fossil fuel CH; emissions posited in this debate (Worden
et al, 2017).

In addition to source changes, variations in the abundance of the hydroxyl radical (OH) (Montzka et al., 2011)
may have also contributed to the observed variations in the growth rate of atmospheric CH, (Dalsgren et al.,
2016; Kirschke et al., 2013; McNorton, Chipperfield, et al.,, 2016; Monteil et al,, 2011; Rigby et al.,, 2017; Turner
etal., 2017). OH is responsible for about 90% of the removal of atmospheric CH,. Its atmospheric concentra-
tion in the past has been affected by changes in CO, CH,, and other hydrocarbons that consume OH and also
by changes in NO,, which recycles OH, and by changes in UV radiation and H,O levels that produce OH
(Banda et al.,, 2016; Lelieveld et al., 2016; Naik et al., 2013). A recent analysis suggests that global mean OH
increased by 46 + 12% as a result of preindustrial to present-day increases in anthropogenic NO, emissions
(Naik et al.,, 2013). OH decreased by 17 + 2%, 8 + 2%, and 3 + 3% due to the CH4 burden, anthropogenic CO,
and non-CH, volatile organic compound emissions, respectively (Naik et al., 2013). It is therefore probable
that at least some of the variability in atmospheric CH, levels over the past decades is due to variations in
atmospheric OH (Rigby et al., 2017; Turner et al., 2017). The reaction of CH, with OH and the formation of
OH from water vapor are both temperature dependent and therefore will be affected by warming global tem-
peratures (Voulgarakis et al., 2013). However, understanding the dynamics of OH at regional and global scales
under future climate scenarios is highly challenging (McNorton, Chipperfield, et al.,, 2016; Rigby et al., 2017;
Turner et al., 2017; Voulgarakis et al., 2013).

1.4. Globally Significant Methane Sources

CH, is emitted from a number of different natural and anthropogenic sources (Figure 3). The contribution of
natural sources to global anthropogenic emissions since 1980 is estimated to be between 33 and 54%, while
anthropogenic sources accounted for between 46 and 67% (Kirschke et al,, 2013). Natural sources are domi-
nated by wetlands, but there are also significant contributions from freshwater systems (Table 1); the latter
include some recent high estimates that add to the uncertainty in the bottom-up budget (Saunois, Bousquet,
et al, 2016). When CH,4 emission values from bottom-up studies (the focus of this review) are extrapolated
and summed up, they result in unrealistically high and poorly spatially constrained best estimates for the total
global CH, source (Table 1). Estimates of the total global CH, source derived from top-down studies, which are
constrained by the observed global CH4 burden, are generally considered more realistic, but they have only
limited power in resolving contributions from individual source types and the underlying processes. There is
some overlap between the high end of the top-down estimates and the low end of the bottom-up estimates
(Table 1), but, in general, the available top-down estimates are much lower than bottom-up estimates.

Natural CH,4 sources include wetlands, freshwater systems, coastal sediments and oceans, methane hydrates,
geological sources, and fauna, each of which may respond differently to a warming climate. The main anthro-
pogenic sources are agriculture and waste, biomass burning, and fossil fuels. These include both methano-
genic processes and infrastructural leakage of fossil CH4. CH,4 from fossil fuel sources have recently been
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. Natural wetlands
D Other natural sources
. Agriculture and waste

D Biomass burning (incl. biofuels)

D Fossil fuels

Figure 3. Overview of the main source categories of CH,4 emission to the atmosphere, based on the top-down budget for
the period 2003-2012 from Saunois, Bousquet, et al. (2016); numbers are in Tg CHy yr71 . The other natural environ-
ments discussed in this review are counted as “Other natural sources” in this figure. Of these, marine and freshwater CH,
emissions account for 68%, wildfires 1.5%, permafrost 0.5%, and methane hydrates 0-1% of the 2003-2012 detailed
bottom-up budget from Saunois, Bousquet, et al. (2016) (Table 1).

suggested to be a much larger component of the anthropogenic CH, budget, as much as 60% greater than
previous estimates (Schwietzke et al., 2016). These anthropogenic sources are primarily influenced by
population dynamics and land use change rather than climate change, although changes in climate,
population, and land use are intrinsically linked.

In addition to separating CH, emissions into natural and anthropogenic sources, it is common to classify
them by their formation mechanisms and/or conditions. The largest group of sources is of biogenic origin.
Thermogenic sources are the main component of CH, in natural gas reservoirs, although biogenic CH, is pre-
sent as well. Pyrogenic CH, from combustion processes also use biological material, but the production process
is clearly distinct. The primary focus of this review is on biogenic and pyrogenic CH,, as these sources are influ-
enced by, and can form feedbacks to, climate systems. Thermogenic sources are unlikely to change under
shifting climate regimes, with the notable exception of the destabilization of trapped thermogenic CH,, for
example CH,4 hydrates discussed in section 7.

An important requirement for most CH,-forming processes is the absence of O,, although there is some
evidence for CH,4 production in oxic environments too (e.g., Keppler et al., 2006, 2009; Tang et al., 2016);
however, these processes have been subject to sustained debate (e.g., Dueck et al, 2007; Nisbet et al.,
2009). This includes mechanisms that are not driven by methanogenic archaea (e.g., Liu et al, 2015) or
those that are governed by alternative pathways and nonoxygen sensitive enzymes (Tang et al., 2016),
such as CH,4 production in freshwater lakes as a by-product of phosphorus metabolism rather than C or
energy metabolism (Yao et al., 2016) or CH, production in oxygenated shallow marine waters by zooplank-
ton (Schmale et al, 2017). There have been other recent indications of nonmicrobial CH, production,
although only at very small levels insignificant in the context of the global CH; budget (Table 1) (Wang,
Lerdau, & He, 2017). The presence of CHy4 in oxic zones in lakes is likely driven by the transport of dissolved
CH, from CH,4 production areas, rather than aerobic, algae-related CH, production (Encinas Ferndndez
et al,, 2016). However, in marine environments, CH,4 production in fully oxygenated sulfate-rich zones (see
section 2.2.2) has been directly attributed to bacterial degradation of dissolved organic matter in seawater
(Repeta et al., 2016). The magnitude and significance of these mechanisms on a global scale are poorly
constrained, but likely small.

There is considerable uncertainty in biogenic emissions (Melton et al., 2013; Schaefer et al,, 2016) and in
particular how natural CH4 production and consumption processes will be affected by a combination of evol-
ving environmental factors in response to climate change. For example, CH, release from thawing permafrost
regions may be affected by temperature changes, not only driving unfrozen soil active layer deepening and
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Table 1

Detailed Annual CH4 Budget in Tg CHy yf’ (See Figure 3 and Associated
Discussion), Adapted From Saunois, Bousquet, et al. (2016) (2003-2012); the
Sink Values Are Based On Kirschke et al. (2013) (2000-2009)

Bottom-Up Top-Down

Total natural sources
Natural wetlands
Other natural sources
Other land sources
Freshwaters
Geological (onshore)
Wild animals
Termites
Wildfires
Permafrost soils (direct)
Oceanic sources
Geological (offshore)
Other (including
methane hydrates)
Total anthropogenic sources
Agriculture and waste
Enteric fermentation and manure
Landfills and waste
Rice cultivation
Fossil fuels
Coal mining
Gas, oil, and industry
Biomass and biofuel burning
Total sinks (Kirschke et al., 2013)
Total chemical loss
Tropospheric OH
Statospheric loss
Tropospheric Cl
Soil uptake
Sum of sources
Sum of sinks

384 (257-524) 231 (194-296)

microbial activity (Bardgett et al., 2008) but also shifting precipitation pat-
terns and altered hydrologic flow paths (Rawlins et al., 2010).

2. Microbial Controls on Methane Transformations

Microbes are the engines that drive Earth’s biogeochemical cycles
(Falkowski et al., 2008). Bacteria and Archaea carry out redox reactions

185 (153-227) 167 (127-202)

199 (104-297) 64 (21-132) (the successive transfer of electrons and protons between chemical

185 (99-272) elements) fundamental to the functioning of our biosphere. Earth'’s C cycle

1313 Egg_;gf) is controlled by transformations between the organic and inorganic pools,
10 (5-15) the majority of which are driven by this microbiological activity. However, the
9 (3-15) complexity of microbial community dynamics and functionality limits the
3 (1-5) inclusion of these analyses in geophysical and geochemical studies where
1(0-1) they are often treated as a black box. We advocate that in order to fully
Egjgi understand the temporal and spatial variability of CH,; emissions, the
2(0-5) processes governing CH,; production and consumption should be

understood at all scales (see section 8.3). Therefore, in this section

352 (340-360) 328 (259-370) we describe the main microbial actors and their functions as a

195 (178-206) 188 (115-243) reference point for readers not familiar with the microbial literature
122 8;_;;;) in an effort to encourage more cross-field collaboration between the
30 (24-36) geosciences and microbial ecology.

121 (114-133) 105 (77-133) .

41 (26-50) 2.1. Methane Production

79 (69-88) Under aerobic conditions, even the most thermodynamically stable sub-
Suiereg) il strates can be rapidly oxidized directly to CO,. In the absence of oxygen,
604 (483-738) 518 (510-538) degradatlor'l of orga{wlc matter often occurs stepW|§g .|n cooperat!on
528 (454-617) between different microbial functional groups. The initial degradation
51 (16-84) (hydrolysis; Figure 1) yields a variety of organic molecules (monomers
25 (13-37) and oligomers; Figure 1), which are then further converted into carboxylic
28 (9-47) 32 (26-42)

acids, hydrogen, and CO; (Figure 1). Generally, methanogenesis is the final

736 (567-884
¢ ) reaction in anaerobic degradation. So both CO, and CH, are the end pro-

632 (492-785)

559 (453-666)
550 (536-580)

Note. Boldface is used in this table to highlight the total values for natural
and anthropogenic methane sources and total sinks; the nonboldface
values refer to values within these categories.

ducts of organic matter degradation in the environment (Figure 1). It has
been estimated that approximately 2% of CO, fixed in the biosphere
annually is converted to, and released to, the atmosphere as CH,4 (Thauer
et al.,, 2008).

Methanogenesis is a strictly anaerobic process catalyzed by specialized groups of archaea that convert CO,
with H,, methanol, methylamines, methylsulfides, or acetate into CH, (Figure 1) (Thauer et al., 2008).
Hydrogenotrophic, methylotrophic, and acetoclastic methanogenic pathways share many genes and
enzymes, most notably in the final step of CH,4 formation (Ferry, 1999).

Since their discovery, and until recently, methanogens were believed to be restricted to the phylum
Euryarchaeota distributed over seven known orders: Methanosarcinales, Methanomicrobiales,
Methanopyrales, Methanocellales, Methanococcales, Methanobacteriales, and Methanomassiliicoccales. The
order Methanosarcinales is metabolically the most versatile, being able to utilize all substrates except formate
(Kendall & Boone, 2006). The rest are restricted either to the reduction of CO, or single-carbon, methylated
compounds using H, as the electron donor (Dridi et al, 2012; Fricke et al., 2006; Lang et al, 2015).
Different modes of energy conservation by methanogens have been reviewed elsewhere (e.g., Ferry, 1999;
Thauer et al., 2008; Welte & Deppenmeier, 2014).

Recently, a novel methanogenic metabolism has been proposed for thermophilic members of
Methermicoccus genus (order Methanosarcinales), in which methoxylated aromatic compounds can be
converted into CH, directly (Mayumi et al., 2016). This discovery could finally explain the origin of coal-
bed methane as these compounds are natural constituents of coal and lignin material (Mayumi et al.,
2016). Further, the concept of methanogens being from a single phylum has been challenged by the
discovery of evidence for methanogenic pathways in archaea outside the euryarchaeal phylum (Evans
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et al, 2015; Lang et al., 2015; Vanwonterghem et al., 2016). These novel, potentially methanogenic phyla,
Verstraetearchaeota and Bathyarchaeota seem to be abundant in nature, and their contribution to CH,
cycling in various ecosystems is unknown. These methanogens likely employ H,-dependent metabolism
of single-carbon methylated compounds such as methylsulfides, methanol, and methylamines, similar to
the Methanomassiliicoccales order mentioned above (Evans et al, 2015 Lang et al, 2015;
Vanwonterghem et al, 2016). This substrate specialization may allow methanogens to coexist with
sulfate-reducing bacteria (SRB), since SRB do not utilize single-carbon methylated compounds
(Oremland & Polcin, 1982). In fact, the methanogens Methanomassiliicoccales and Bathyarchaeota have
been detected in sulfate methane transition zones around the globe (SMTZs—ecosystems where
CH,4-dependent sulfate reduction is the predominant metabolic process) (Ruff et al., 2015). This suggests
that CH4 cycling in those ecosystems involves complex interactions between microbial production and
consumption of CH,.

2.2. Methane Consumption

2.2.1. Aerobic Oxidation of Methane

The production of CH,4 does not necessarily mean that it will ever reach the atmosphere where it can act
as a GHG because CHy, is subject to oxidation in many environments. In the natural environment, CH, pro-
duced in deeper anoxic layers diffuses through the sediment column toward the upper more oxidized
zone (Figure 1). Here aerobic methane oxidizing bacteria (MOB) oxidize CH,4 to CO,. The highly specialized
mechanism of CH, oxidation is initiated by methane monooxygenase (Mmo), an enzyme which utilizes
oxygen for the initial activation of CH, to methanol (Hanson & Hanson, 1996). The gene encoding for
Mmo (pmoA) is commonly used as a biomarker for aerobic methanotrophy in the environment.
Phylogenetically, MOB belong to three lineages: a-Proteobacteria, y-Proteobacteria, and Verrucomicrobia
(Hanson & Hanson, 1996; Op den Camp et al, 2009). The latter dominates only in high-temperature/
low-pH conditions, such as volcanic regions (Op den Camp et al., 2009). Proteobacterial methanotrophs
are ubiquitous and have been detected in a variety of habitats. Taxonomically, based on their difference
in metabolism and morphology, proteobacterial methanotrophs have been divided into two groups: type
| and type Il. Type | methanotrophs belong to y-Proteobacteria and are grouped in the family
Methylococcaceae, which to date includes 18 genera (Bowman, 2011; Knief, 2015). They prevail in both ter-
restrial and marine CHy-rich environments, utilizing CH, for both assimilation and energy generation
(Hanson & Hanson, 1996). Type Il methanotrophs are represented by a-Proteobacteria, including five
known genera (Knief, 2015), which mostly thrive in terrestrial environments low in ambient CH,4 by utiliz-
ing even atmospheric concentrations (Bull et al., 2000; Holmes et al., 1999). They assimilate only about half
of their C from CHy,, with the rest originating from CO, (Hanson & Hanson, 1996). Studies on the competi-
tion between members of type | and type Il MOB have shown that CH,, nitrogen, and copper availability
can be crucial factors for success (Graham et al.,, 1993; Ho et al., 2013).

2.2.2. Anaerobic Oxidation of Methane

The thermodynamic stability of CH, was the reason that for decades O, was considered to be the only pos-
sible electron acceptor for CH,4 oxidation. The first indications for CH4 oxidation under anaerobic conditions
came from geochemical mass balance calculations that indicated the disappearance of CH, in anoxic marine
environments where sulfate was the only available electron acceptor (Barnes & Goldberg, 1976; Panganiban
et al, 1979; Reeburgh, 1976). Later, a combination of molecular and physiological studies provided strong
indications for biologically driven sulfate-dependent anaerobic oxidation of methane (S-AOM). S-AOM is per-
formed by anaerobic methanotrophic archaea (anaerobic methanotrophs—ANME) and sulfate-reducing bac-
teria, creating sulfate CH, transition zones in marine and brackish sediments (Knittel & Boetius, 2009). ANME
are related to methanogens and employ a similar metabolism that operates in reverse, with reducing equiva-
lents (molecules or electrons, directly) produced from the oxidation of CH,4 shuttled to sulfate-reducing bac-
teria (SRB) (Kriiger et al., 2003). The type and process of this exchange has been investigated, but several
theories still exist regarding either direct or indirect electron transfer between ANME/SRB partners
(McGlynn et al., 2015; Milucka et al., 2012; Wegener et al., 2015).

The discovery that nitrogen oxides can also be used as electron acceptors for CH, oxidation (N-AOM) was
made a decade ago, and until now, two groups of organisms have been identified in performing this process.
N-AOM bacteria, Methylomirabilis oxyfera, use nitrite as the electron acceptor in an intra-aerobic pathway,
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Figure 4. Schematic diagram of how environmental disturbance, forced by climate change, can alter the key processes governing the net release of CH4 from natural

CH4 producing environments.

where nitric oxide is hypothesized to be dismutated to nitrogen and oxygen, with the latter then used by an
Mmo (Ettwig et al., 2010, 2012). M. oxyfera-like bacteria thrive at oxic/anoxic interfaces where nitrogen oxides
and CH,4 cooccur, as is the case in many freshwater sediments. Nevertheless, M. oxyfera have also been
recently detected in brackish and even marine environments (Chen, Zhou, & Gu, 2014; Li-Dong et al., 2014;
Padilla et al., 2016), indicating an adaptation to saline conditions and competition for CH; with S-AOM
organisms. The other organisms shown to catalyze N-AOM are archaea related to methanogens, which
utilize the methanogenic pathway in reverse (Haroon et al, 2013). This archaeon, Methanoperedens
nitroreducens, is closely related to S-AOM performing ANME but uses nitrate as the terminal electron
acceptor (Arshad et al,, 2015; Haroon et al., 2013). M. nitroreducens have so far mostly been detected in
freshwater habitats similar to those of M. oxyfera, where they coexist, as nitrite produced by M.
nitroreducens can be used by M. oxyfera bacteria (Vaksmaa et al.,, 2016; Welte et al.,, 2016).

Biogeochemical measurements and modeling also point to an iron-dependent CH, oxidation pathway in
sediments that are rich in iron oxides and CH, (Crowe et al., 2011; Egger et al,, 2015; Nordi et al,, 2013;
Sivan et al., 2011). Recently, iron-reducing activity associated with CH4 oxidation was shown under laboratory
conditions for known ANME (Ettwig et al., 2016; Scheller et al., 2016). However, it still needs to be shown
whether microorganisms can use this metabolism for growth.

3. Environmental Controls and Processes of Methane Emission

The microbially mediated processes of CH, production and consumption are controlled directly and indir-
ectly by local environmental conditions. Environmental conditions have an effect on the pathway and rate
of CH,4 production and emission, including the methanogenic population compositions present and their
ability to function. Changes to environmental conditions can therefore alter local microbial communities
and resultant CH, emissions. This was observed in warming permafrost where differences in soil substrate
availability resulted in taxonomic shifts in methanogen communities, thereby affecting CH, emissions
(Tveit et al., 2015). Similar effects have also been observed in marine environments (e.g., Yuan et al., 2014).
Altered concentrations of CO, and CH,, and also increasing temperature and drought, would determine
the community composition and activity of methanotrophs (Horz et al., 2005; King, 1997; Knoblauch et al.,
2008). These taxonomic shifts will in turn lead to community changes of metabolic partners, which could
potentially cause a cascade effect through the whole microbial community and alter CH, dynamics. In terres-
trial zones, elevated atmospheric CO, can increase primary production and organic C transfer to the rhizo-
sphere (the soil zone influenced by microbial and plant root dynamics), increasing resource availability for
methanogenesis (Figure 4) (Nazaries et al., 2013). Methanotrophy in these zones is thought to be less influ-
enced by temperature and more by soil moisture, which controls oxygen availability (Nazaries et al., 2013).

3.1. Direct Methane Emission

Following its production, CH4 can be transported vertically or laterally. The nature of the transport pathway
(length, direction, and the presence of methanotrophs) determines the likelihood of CH4 being consumed
versus its eventual release to the atmosphere. CH, is readily transferred to the atmosphere directly via vertical
transport through the soil zone (Borges et al., 2016; Olefeldt et al., 2013; Throckmorton et al., 2015). The lateral
movement of CH, transports dissolved CH, via anoxic water bodies that are discharged into open waters
where CH, can be emitted to the atmosphere (Abril & Borges, 2005; Dean et al.,, 2017; Street et al., 2016).
This can only occur via diffusion and dissolution in moving water (except where confining sediment layers
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redirect trapped CH,4 bubbles), whereas vertical transport can also occur as gas bubbles (ebullition). CH4 can
accumulate in concentrated gas pockets in waterlogged sediment, generally where gas diffusion is
prevented by a confining layer, raising pore pressure until the bubbles are expelled (Baird et al., 2004;
Glaser, 2004; Kellner et al., 2004; Tokida et al., 2007). Ebullition events can be triggered by either natural or
artificial disturbance. Atmospheric pressure fluctuations play an important role in determining the timing
and quantity of these emissions (Shakhova et al., 2014; Tokida et al., 2007), while tidal pressure acts as an
important control on bubble release in shallow estuarine and marine environments (Chanton et al., 1989).
Sea level rise and increased frequency of storm events associated with climate warming can affect the
physical processes governing CH, release and therefore the magnitude of these emissions. In lakes, reservoirs
and ponds, emissions of dissolved CH,4 can also be driven by hydrodynamic transport, whereby temperature
gradients (primarily at nighttime) drive thermal convection causing relatively rapid upwelling of CH, from
deeper water layers by both diffusion and advection (Poindexter et al., 2016). This process varies on a seaso-
nal basis and could potentially be important on a global scale (Walter Anthony & Macintyre, 2016).

3.2. Vegetation

The amount of CH, produced in a system depends on substrate availability. Vegetation can increase the avail-
ability of organic substrates for methanogenic communities by the exudation of acids and carbohydrates
from root systems, the routing of oxygen into the soil zone, and by providing the accumulation of organic
matter in the first place (Joabsson & Christensen, 2001) (Figure 1). Both the degree of soil water saturation
and vegetation affect the activity of methanogens (Bubier et al., 1995; Dias et al., 2010), while soil moisture
is an important determinant of vegetation composition (Figure 4) (Engelbrecht et al., 2007). In peatlands,
there is also a symbiotic relationship between some vegetation species and methanotrophs (see section 4).

Soil saturation is often positively related with CH, emission because it reduces the aerobic zone where
methanotrophic bacteria are active (e.g., Bubier, 1995; Goodrich et al., 2015; Hirano et al., 2009). Vascular
plants themselves provide a direct pathway of vertical CH, release via aerenchyma (cortical oxygen-
transporting gas spaces), which are common in plant species adapted to wetland conditions (Armstrong
et al,, 1991). This conductive plant tissue, for example, in sedges (Carex spp.), allows CH, produced in deep,
anoxic layers to be transported directly to the surface without exposure to oxidizing layers (Chanton et al.,
1989; Joabsson et al., 1999; Whiting & Chanton, 1993). This mechanism can also work in reverse, releasing
oxygen from the roots into the rhizosphere, inhibiting CH, production by methanogenic archaea (Frenzel,
2000), as oxygen release stimulates CH,4 oxidation. Oxygen availability also alters the redox zonation around
the roots (Van Der Nat & Middelburg, 1998). In water logged and aquatic systems, macrophytes can transport
gases via passive (diffusive) or active (convective) systems. Passive transport is common over short flow
paths, where plants utilize pressure gradients to transport gases through conductive tissue, but this mechan-
ism is less effective over longer flow paths (Chanton, 2005). Recent measurements suggest that transport of
CH, via tree stems also provides an important pathway for CH, emissions in forested tropical and temperate
wetlands (Pangala et al., 2013, 2017, 2015).

CH, transport to the atmosphere via plant aerenchyma, bypassing the soil aerobic zone, is responsible for 55
to 85% of CH,4 emissions from peatlands, one of the most important ecosystem types with regards to global
CH,4 emissions (Waddington et al., 1996). Vegetation composition, which is influenced by different environ-
mental factors, is commonly used to model CH, emissions (Bubier, 1995; Bubier et al., 1995; Dias et al.,
2010; Hendriks et al., 2007; Schrier-Uijl et al., 2010; van den Pol-van Dasselaar & Oenema, 1999; Whiting &
Chanton, 1993). Soil saturation, or water table height, is also a good predictor of CH, emission, showing
the same predictive power as species composition. However, water level shows high variability through time
(Bubier, 1995; van den Pol-van Dasselaar & Oenema, 1999); therefore, subdaily measurements of water table
levels are often required for accurate estimates of CH, emissions. In contrast, plant species composition is
much more stable in time because it reflects integrated environmental factors over a longer period.
Sampling only once a year can provide a good estimate of plant community composition.

3.3. Fire

Fire is a major terrestrial disturbance mechanism that can cause rapid alteration of local and regional vegeta-
tion and soil conditions (van der Werf et al,, 2010). Under warmer climates, the frequency and intensity of
burning is predicted to increase (e.g., Veraverbeke et al., 2017), impacting terrestrial C stores and indirectly
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affecting landscape CH, fluxes. Fires can be a direct source of CH, emissions, although natural fires, in gen-
eral, tend to have relatively high CO, and low CH4 emissions (Akagi et al., 2014). The CH,4:CO, ratio can be
slightly different depending on severity and fuel types and differs among ecosystems (Kasischke &
Bruhwiler, 2002; van der Werf et al., 2010). For example, the CH4:CO, emission ratio is higher in peatland fires
(~0.01) compared to boreal forests (~0.004) and savannah/grassland (~0.001) (Kasischke & Bruhwiler, 2002;
van der Werf et al,, 2010). Peatland burning emitted on average 3.1 Tg CH, yr ' between 1990 and 2010, whereas
savannas, grassland, and shrubland burning together emitted 5.6 Tg CH,4 yr’1 (van der Werf et al, 2010).
Although peatland fires release less CH, in total, per unit area they release significantly more CH, compared
to savannas, approximately 3,700 and 80 g km™2, respectively. Globally, fire is responsible for ~16 Tg of CH,
emissions per year, with occasional peaks of up to 20 Tg CH, yr~' (Giglio et al, 2013; van der Werf et al,
2017). Isotopically (5"30), the CH, produced during fires (pyrogenic CH,4) has an exceptionally high 13C content,
being greater than 10%o0 more enriched than CH, from other sources (Schwietzke et al., 2016). Therefore, even
small changes in the contribution of pyrogenic sources to contemporary CH,; emissions can affect the
atmospheric 5'3CH, value, providing an important constraint on pyrogenic CH, contributions to the recent
CH., budget (Worden et al, 2017). 5'3C variations in CH, extracted from air trapped in polar ice cores have
been explained by additions of pyrogenic CH,; to the past atmosphere from both natural and early
anthropogenic sources (Ferretti et al,, 2005; Sapart et al,, 2012).

Burning most severely affects the upper soil layers where soil organisms are abundant, increasing tempera-
tures both during and after fire because burned soil is darker and therefore absorbs more solar radiation
(Benscoter et al., 2011; Stoof et al., 2011) (Figure 4). The microbes that recolonize the soil are responsible
for CH, fluxes following fires, but they are dependent on the remaining vegetation and resources such as soil
organic matter that can be consumed during burning (Figure 4).

Sudden and gradual shifts in environmental conditions affect postfire CH,4 fluxes. For example, the destruc-
tion of aboveground cover and ash deposition cause soil temperatures to more rapidly increase during the
day and decrease during the night, speeding up biological processes, stimulating decomposition and CH,4
release (Bissett & Parkinson, 1980; Hart et al., 2005); a similar effect occurs during the transition between sea-
sons (Fisher et al.,, 2000). Ash deposition after fire was also found to increase methanogenesis, most likely due
to its high nutrient release (Williams & Crawford, 1984). However, under dry conditions, consumption of CH,
by methanotrophs results in the landscape becoming a CH, sink (Jauhiainen et al., 2008).

4, Wetlands

4.1. Wetlands as Organic Carbon Stores

A wetland is an area of land covered or saturated with fresh, brackish, or salt water permanently or tempora-
rily (such as the Okavango Delta in Botswana), including marine areas where the water depth during low tide
does not exceed 6 m (Navid, 1989). Wetlands can be natural (e.g., bogs and mangroves) or artificial (e.g., rice
paddies) and are found across all climate zones (Ramsar, 2007). Wetlands provide a vital range of ecosystem
services (Mitraet al.,, 2005; Mitsch & Grosselink, 2007) and play an important role in (terrestrial) C storage
(Petrescu et al., 2015). Occupying only 4-6% of the Earth’s land area (around 596-894 million ha), they
sequester and retain C through permanent burial (Mitsch & Grosselink, 2007), storing between 400 and
500 Pg of C (Joosten & Couwenberg, 2008; Pageet al., 2011; Roulet, 2000)—approximately 20% of the global
soil C pool (Lal, 2008).

Wetlands primarily sequester C through photosynthesis, storing C in plant biomass, and through the accumu-
lation of organic matter in soils (peat) and also through the deposition of C-rich sediments in estuarine and
mangrove environments. This C store is maintained by water logging, which limits the diffusion of oxygen
into sediments. What little oxygen is present is rapidly used up by aerobic processes, creating anoxic condi-
tions that slow down decomposition and facilitate the production of CH,. As a result, wetlands are the largest
single source of CH, emissions (Saunois, Bousquet, et al., 2016), contributing 150-225 Tg CH, yr ' (about one
third of total global CH,4 emissions; Figure 3) (Bridgham et al., 2013; Kirschke et al., 2013; Saunois, Bousquet,
et al,, 2016). Of the total wetland CH,4 emissions, tropical wetlands account for 50-60%, northern (Boreal and
Arctic) wetlands ~34%, and temperate wetlands ~5% (Bloom et al., 2010; Wanget al., 1996). In this section, we
focus on terrestrial wetlands; mangrove and estuarine wetlands are considered in section 5.

DEAN ET AL.

218



@ AG U Reviews of Geophysics 10.1002/2017RG000559

4.2. Mechanisms of Methane Emission

CH,4 emissions from wetlands are difficult to predict (Bridgham et al,, 2013; Ringeval et al,, 2014), as they can
vary by several orders of magnitude within and between sites depending on local and temporal (diurnal to
seasonal) conditions, such as hydrology, vegetation, and climate (Turetsky et al., 2014). Both CH, production
and consumption by microorganisms are controlled by (i) the water table, which determines the oxic and
anoxic zones in the soil; (i) the temperature of the soil, which affects the rates of microbiological processes;
and (iii) substrate availability for microbial methanotrophy or methanogenesis (see sections 2 and 3 and
Figure 4) (Walter & Heimann, 2000). Following production, one of the key mechanisms of CH, release from
wetlands is plant-mediated transport, although ebullition can also be important. Diffusive fluxes (including
hydrodynamic transport—see section 3.1) are generally considered less important (Poindexter et al., 2016)
but can be significant in systems with large areas of open water (Billett & Moore, 2008). Here we consider only
the role of small water bodies (ponds) in wetlands; larger bodies such as lakes are considered in section 5.

While the dominance of vascular plants has a significant positive relationship with CH, fluxes, substantial var-
iation has been found between CH,4 emissions from various vegetation types likely due to methanotrophs
associated with wetland plant species reducing net CH, fluxes. Methanotrophs in Sphagnum root systems
can reduce diffusive CH, transport by up to 98% (Raghoebarsing et al., 2005; van Winden et al., 2012). The
interplay of environmental conditions complicates the picture further. In Carex-dominated peatlands, lower
CH,4 emissions were found compared to Sphagnum-dominated peatlands (Nilsson & Bohlin, 1993). This could
be due to generally higher water tables in Sphagnum peatlands and also the lower availability of cellulose and
hemicellulose in Carex peatlands (Bohlin et al., 1989; Nilsson & Bohlin, 1993). Methane transport via tree
stems has recently been reported to be important in both tropical and temperate forested wetlands
(Pangala et al., 2013, 2015). This pathway is responsible for up to 27% of the total seasonal ecosystem flux
in temperate forested wetlands (Pangala et al., 2015) and is responsible for ~40% of total CH, emissions from
wetlands in the Amazon (Pangala et al., 2017).

4.3. Regional Wetland Characteristics

Tropical wetlands dominate CH, emissions, but in comparison to northern wetlands, their biogeochemistry is
poorly understood (Mitsch et al., 2010). While defined as being located between 23.45° north and south, the
spatial extent of tropical wetlands is largely uncertain (Riley et al., 2011), and they are still being discovered
(Dargie et al., 2017). Observational data suggest that these areas range between 2.8 and 6.0 x 10° km?, while
models predict an area of 1.3 to 13.2 x 10° km?. This is primarily due to a lack of observational data (Melton
et al., 2013), but uncertainties in distributions are even larger (Gumbricht et al.,, 2017; Sjégersten et al., 2014).
Consequently, estimated CH,4 fluxes from tropical wetlands vary widely, from 85 + 7 t0 184 + 11 Tg CHa yr"
(Melton et al., 2013).

Swamps (forested wetlands) and freshwater marshes (herbaceous and frequently inundated areas) are
thought to be the most abundant wetland types in the tropics (Lehner & Déll, 2004; Mitsch & Grosselink,
2007). Both have common characteristics, such as high mean annual temperature with little seasonal varia-
tion and high precipitation, with the main input of organic matter coming from tropical rainforest vegetation.
Soil types are highly variable in the tropics, but most are characterized by enhanced leaching, acidic condi-
tions, and low nutrient availability (Moreiraet al., 2011). Rice paddies are estimated to account for more than
a quarter of tropical CH, emissions (Bloom et al.,, 2010). Increasing emissions from rice paddies and the expan-
sion of tropical wetland areas are thought to have been important drivers of the recent rise in global atmo-
spheric CH,4 (Figure 2) (Nisbet et al., 2016).

Northern and temperate wetlands are widely distributed in cold and temperate climates between 40° and
70°N and have an estimated annual CH, flux of 19+ 7 g CHy m 2 yr~' (Mitsch et al., 2013), roughly a quarter
of the emissions from tropical wetlands. Northern and temperate wetland processes are also relevant to
Southern Hemisphere temperate wetlands (e.g., Goodrich et al., 2015), which are less studied.

Peatlands are important wetlands in these areas, as well as in the tropics (Page et al., 2011; Evans et al., 2014).
Peat soils are formed from partially decomposed plant material that has accumulated under anaerobic water-
saturated conditions (Rydin & Jeglum, 2013). Peatlands can be divided into two main types: ombrotrophic
(bogs) and minerotrophic (fen) peatlands. Bogs primarily receive water and nutrients from atmospheric
deposition and precipitation and as a result tend to be nutrient poor. Fens also receive nutrients from the
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surrounding aquifer and its catchment area, including anthropogenic inputs, so their nutrient status can
range from oligotrophic to mesotrophic/eutrophic conditions (Abdalla et al., 2016; Clymo, 1983). CH,4 emis-
sions from fens are slightly higher than those from bogs likely due to the greater presence of aerenchyma-
tous plant roots (Corbett et al., 2015). Optimal water table heights for CH, production are generally below
the peat surface in bogs, above the peat surface in nutrient-rich fens, and close to the peat surface in
nutrient-poor fens (Abdalla et al., 2016; Turetsky et al., 2014).

Water table heights have historically been altered as humans seek to make use of otherwise waterlogged
areas, usually by digging drainage ditches and extracting water. Wetland drainage causes oxygen intrusion
into deeper soil layers, and the subsequent aerobic decomposition of organic matter and land subsidence
leads to significant CO, emissions (Joosten, 2010; Leifeldet al., 2011; van der Akker et al., 2008), while CH, emis-
sions generally decline (Moore & Dalva, 1993; Pelletier et al., 2007). Drained and degraded peatlands are net C
sources (with reported net ecosystem exchange rates ranging from 80 to 880 g C m—2 yr~ ') (Lamers et al,,
2015), and the net flux of GHGs to the atmosphere directly impacts climate warming. As a mitigation action,
many wetlands are being restored by rewetting (raising the water table back to previous levels prior to drai-
nage) (Abdalla et al,, 2016). Rewetting may lead to excessive CH, emission initially, when vegetation is flooded
and dies off becoming available for methanogenesis (Augustin & Chojnicki, 2008). The evolution of CH, emis-
sion patterns following rewetting can vary depending on the previous land use (Abdalla et al., 2016), but
rewetting is generally considered to reduce net GHG emissions in the long run (Joosten, 2015; Strack &
Zuback, 2013). This may not remain the case if rising global temperatures drive CH4 emissions higher.

4.4. Sensitivity and Drivers of Wetland Methane Climate Feedbacks

Global climate change is likely to have significant impacts on wetlands due to their susceptibility to tempera-
ture fluctuations, hydrology, and nutrient availability, which are expected to respond to rising atmospheric
CO, concentrations (Erwin, 2009). Fires can also be important in wetland systems due to the high amounts
of C stored in their soils, particularly in the tropics where fire frequencies are generally higher than in tempe-
rate and polar regions (see section 3.3) (van der Werf et al., 2010). For example, in a subtropical wetland marsh
CH,4 emissions immediately following a fire increased by up to 50% (Levine et al., 1990).

Temperature is known to enhance archaeal CH, production and bacterial CH, oxidation (Frenzel & Karofeld,
2000; Kip et al., 2010; van Winden et al., 2012). In a global meta-analysis of CH, emissions and environmental
parameters Yvon-Durocher et al. (2014) showed that CH4 emissions are likely to increase relative to CO, emis-
sions from wetlands under predicted global warming. Their analyses indicate that soil temperature increases
between 0 to 30°C could correspond to a 57-fold increase in CH, emissions, depending on temperature
optima of different microbes and their associated enzymes (Schipper et al.,, 2014). Although generalized
across multiple ecosystems, and representing an unrealistic sustained temperature rise, this mirrors findings
in permafrost settings (see section 6) (Conrad, 2002; Whalen, 2005). It is currently thought that CH, oxidation
in wetlands can keep pace with increased CH, production as temperatures increase (Kip et al., 2010); how-
ever, CH, oxidation rates in soils are theoretically less temperature dependent than CH, production
(Schipper et al., 2014). Anaerobic oxidation of CH, is also possible in freshwater wetlands and may be respon-
sible for reducing the CH, emitted to the atmosphere by up to 50% (Segarra et al., 2015).

The influence of temperature on CH,4 emissions, however, is also strongly dependent on hydrologic condi-
tions (Olefeldt et al, 2017). Mean precipitation in already dry midlatitude and subtropical regions is
predicted to decline under warming scenarios, whereas in the wet midlatitudes and northern wetland
regions it is predicted to increase (Collins et al., 2013). Extended droughts will lower water tables in wetlands
and decrease CH,4 emissions but increase CO, emissions (Mitsch et al., 2010). Increased precipitation will
raise water tables and even expand wetland areas thereby promoting C sequestration and also CH, emis-
sion. The balance between these two processes is critical in determining whether changes in wetlands
are contributing to a positive or negative climate feedback. A rise in precipitation can also increase the rate
of organic substrate leaching to deeper parts of the peat profile, leading to increased methanogenesis. CH,4
production rates at depth can be 2-4 times higher than in the top 1 m of peat, and this effect has been
observed on decadal timescales (Glaser et al., 2016). Increased methanogenesis will put greater pressure
on the oxidative capacity along the export pathway of this CH, whether vertically or laterally when dissolved
in groundwater.
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Wetlands are expected to become major net sources of C under warming climate conditions within decades
(Kayranli et al., 2010). This may be balanced by increased plant production in response to higher atmospheric
CO,. When plant production and the accumulation of organic matter in peat soils occur at a higher rate than
CO, and CH,4 emissions, the net climate feedback will become negative (Davidson & Janssens, 2006). The
overall impact of climate change on wetland C storage and CH, emissions, however, remains uncertain as
the response mechanisms are highly complex and vary from site to site. For example, plant-mediated
transport will depend on changes in vegetation cover and constitutes a poorly understood feedback.
Given that wetlands are the largest natural CH,4 source, understanding CH4 dynamics in these systems is
critical to the future of the global CH,; budget. Protection, restoration, and sustainable management of
wetlands can provide potential climate change mitigation benefits, but a better understanding of the
mechanisms and magnitude of CH, emissions under shifting climate patterns is needed to determine the
best management strategies.

5. Marine and Freshwater Systems
5.1. Aquatic Methane Dynamics

At present, freshwater systems (lakes, rivers, streams, and ponds) are estimated to be major sources of CH, to
the atmosphere at the global scale with a combined flux of ~40 Tg CH, yr™", but with a large uncertainty
range (8-73 Tg CH, yr ") (Kirschke et al., 2013); a more recent bottom-up inventory suggests that freshwater
emission could be as high as 122 (80-160) Tg CH,4 yr’1 (Saunois, Bousquet, et al., 2016). This uncertainty is
largely due to recent freshwater studies that include (or exclude) ebullition, which have upscaling issues
because of high temporal and spatial heterogeneity in flux densities, and uncertainty in inland water surface
areas (Cole et al., 2007; Holgerson & Raymond, 2016). For instance, very small ponds contribute disproportion-
ally to CH, emissions but are often excluded in global estimates, and their surface areas are poorly constrained
(Downing et al., 2006; Holgerson & Raymond, 2016). A complicating factor is that very small ponds are some-
times included in the definition of wetlands with the risk that their associated CH, emissions are inappropri-
ately attributed or accounted for twice in global emission assessments (Thornton, Wik, & Crill, 2016). Reservoirs
created by dams in rivers are a special case of man-made freshwater systems that are often eutrophic and that
contribute CH, to the atmosphere at an estimated rate of ~13 Tg CH, yr~' (Deemer et al., 2016).

Estuaries release ~7 Tg CH, yr™' to the atmosphere (Borges & Abril, 2011). CH, release from continental
shelves and the open ocean is not well constrained, with estimates ranging from 1 to 20 Tg CH, yr™"
(Borges et al.,, 2016). CH, emissions from mangrove forests, although extremely C rich and under threat from
climate change and anthropogenic disturbance, are also poorly constrained (Donato et al.,, 2011; Valiela et al.,
2001). C stocks in mangrove sediments could, in fact, increase in response to predicted precipitation
increases in the tropics (Sanders et al., 2016).

Sediments of lakes, rivers, and coastal marine systems can accumulate large amounts of organic C-rich debris
(Cole et al.,, 2007; Regnier et al., 2013). Degradation of this organic matter in the sediment in the presence of
various electron acceptors typically leads to the development of a geochemical zonation. There are especially
clear distinctions between oxic surface sediments, underlying sulfidic sediment layers where sulfide from
50,2~ reduction accumulates (see section 2.1), and the methanic zone where CH, that formed through
methanogenesis is present (Canfield & Thamdrup, 2009). This zonation is thought to be kinetically or energe-
tically controlled through the differing abilities of the functional groups of microbes to compete for common
substrates. The overall rate of anaerobic organic matter degradation is determined by the amount and quality
(i.e, composition and age) of the organic matter (Arndt et al., 2013).

In general, rates of methanogenesis in freshwater sediments are higher than in marine sediments. This is
mostly the result of a lower availability of SO4>~ in freshwater sediments, which allows a larger proportion
of the more easily degradable organic C to be converted to CH,4 (Borges & Abril, 2011; Capone & Kiene,
1988). The major pathways of methanogenesis in both types of environments differ: while hydrogenotrophic
methanogenesis (from H,/CO, and formate) is dominant in marine sediments, acetate fermentation is
generally quantitatively more important in freshwater sediments (Whiticar et al., 1986). CH4 may also be pro-
duced in oxic oligotrophic surface waters of the ocean (Reeburgh, 2007). This has been attributed to methy-
lotrophic methanogenesis using metabolites from phytoplankton or dissolved organic carbon as a C source
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(Damm et al., 2010; Repeta et al., 2016); recent radiocarbon measurements have shown that dissolved CH, in
the surface waters of the Beaufort Sea is modern, indicating that these processes are an important compo-
nent of marine CH4 emissions (Sparrow et al., 2018). Finally, upward seepage of CH, of microbial, thermo-
genic, or geothermal origin from the deep subsurface through the seafloor is a common feature in many
oceanographic settings, especially on continental margins (Etiope et al., 2008; Judd, 2003). This deep "geolo-
gical” CH,4 flux is not sensitive to climate change (unless it is associated with permafrost thaw, see section 6.3,
or methane hydrate dissociation, see section 7) but forms a relatively unknown background CH, flux against
which it is difficult to measure changes in marine fluxes due to climate warming.

Most of the CH,; produced in aquatic sediments (or formed in the deep subsurface) that is transported
upward to the sediment surface through diffusion or seepage is oxidized to CO, by various methanotrophic
pathways, allowing only a small proportion of the CH,4 to escape to the atmosphere (see section 2.2 and
Figure 1) (Conrad, 2009; Reeburgh, 2007). In marine sediments, the anaerobic oxidation of CH, with 504>~
(S-AOM,; see section 2.2.2) is particularly efficient and is thought to account for more than 90% of CH4 removal
(Knittel & Boetius, 2009; Reeburgh, 2007). In freshwater sediments, aerobic oxidation of CH4; near the
sediment-water interface and in the water column is typically the dominant removal process for CH,, with
a lesser role for SO,°~ because of its lower availability (Borges & Abril, 2011). While AOM coupled to iron
or manganese may significantly impact other biogeochemical cycles in aquatic sediments (e.g., phosphorus)
(Rooze et al., 2016), rates of oxidation are estimated to be low and not major contributors to CH, removal
(Egger et al., 2015; Sivan et al., 2011).

In some settings, dissolved CH, is present in sediments with abundant pore water SO4>~, pointing toward
inefficient oxidation of CH, with SO,°~ (Egger et al,, 2016; Iversen & Jorgensen, 1985; Jgrgensen et al,,
2001; Knab et al., 2009; Piker et al.,, 1998; Thang et al,, 2013; Treude et al., 2005). The reasons for this slow
microbial turnover of pore water CH, remain largely unknown. One suggestion may be that the CH, flux is
so high that it overwhelms the microbial oxidation capacity (Boetius & Wenzhofer, 2013; Orcutt et al,,
2005). However, there are indications that in rapidly accumulating sediments the slow growth of CH,4
oxidizing communities prohibits the development of an efficient AOM barrier (Dale et al., 2008; Egger et al,
2016; Nauhaus et al., 2007; Thang et al.,, 2013). Rapid rates of sediment accumulation are common in coastal
environments subjected to eutrophication and other human activities (e.g., dredging, sediment dumping, and
increased river inputs of organic rich material) (Borges & Abril, 2011). The lack of an efficient oxidative barrier
for CH4 may contribute to increased CH, fluxes from such systems to the water column and the atmosphere.
But given their relatively small area, these systems are likely not important sources of CH, at the global scale.

5.2. Mechanisms of Methane Emission

Differences in transport regimes for fluids, solutes, and gases play a critical role in controlling the efficiency of
CH,4 removal in lakes, rivers, estuaries, and the ocean (see section 3.1) (e.g., Borges & Abril, 2011; Reeburgh,
2007). In all these environments, especially shallow waters, the total gas pressure can exceed the ambient
hydrostatic pressure, resulting in the formation of CH,; bubbles in the sediment (Maeck et al., 2013).
Transport through ebullition is faster than through diffusion, although ebullition can also be highly episodic
(Scandella et al., 2016), allowing CH, to bypass the geochemical barrier of oxygen and 50,42~ (Figure 1)
(DelSontro et al.,, 2010). In the intertidal zone in estuaries and in mangroves, CH, may also be transferred
directly from sediments to the atmosphere (Borges & Abril, 2011). At low tide, this can take place through dif-
fusion or ebullition (Martens & Val Klump, 1980) where, when tidal flats are vegetated, plants may act as both
active and passive conduits of the CH, (Foster-Martinez & Variano, 2016; Van der Nat & Middelburg, 2000).
Lateral tidal pumping, the flushing of CH, from intertidal sediments to the water by advective flow and subse-
quent diffusive transfer of the CH,4 to the atmosphere, contributes strongly to the high temporal and spatial
variability in the CH, flux from estuarine waters to the atmosphere. Even at the same salinity, these fluxes range
over several orders of magnitude (Borges & Abril, 2011; Middelburg et al., 2002). In general, more CH, escapes
from aquatic systems to the atmosphere with decreasing salinity due to the combined effect of more CH,4 pro-
duction near the sediment surface and less effective removal through oxidation due to lower SO4%~ concen-
trations (Borges & Abril, 2011; Middelburg et al., 1996). In rivers and streams, CH,4 transfer to the atmosphere is
driven primarily by water velocity, which is related to turbulence. This has been identified as a potentially sig-
nificant outlet for terrestrially derived CH, on a global scale at 26.7 Tg CH, yr™' (Stanley et al., 2016).

DEAN ET AL.

222



@ AG U Reviews of Geophysics 10.1002/2017RG000559

5.3. Sensitivity of Marine and Freshwater Systems to Climate Change

Increased temperatures due to ongoing climate change are expected to increase CH, bubble formation in
both marine and freshwaters because of a decrease in CH, solubility (Wever et al., 1998). As a consequence,
more CH,4 could bypass the zones of aerobic and anaerobic oxidation, thereby enhancing the release of CH,
to the atmosphere (Knittel & Boetius, 2009; Thornton et al.,, 2015). However, in marine settings, it is also pos-
sible for the oxidation potential of the sediment and water columns to match increased CH, release, such as
that which occurred during the BP Deepwater Horizon CH,4 blowout in 2010 when there was a large CH,
release from the seafloor (Kessler et al, 2011), but no subsequent emissions at the ocean surface were
observed (Yvon-Lewis et al.,, 2011).

At least 50% of all lakes are located in boreal regions and northward, and climate change is currently leading
to increased permafrost thaw (see section 6), warming of lake waters, and longer ice-free seasons, which
together act toward enhancing CH, fluxes to the atmosphere. Longer ice-free periods could increase CH,
emissions from northern freshwater systems by up to 50% by 2100 (Wik et al., 2016). Recent findings showed
that spring ice out in these systems is associated with major CH, release from ice bubble storage and ebulli-
tion (Denfeld et al., 2016; Sepulveda-Jauregui et al., 2015). This highlights the need for measurements of
fluxes in the shoulder (refreezing and thaw) seasons (Zona et al., 2016).

Declines in sea ice extent may also increase ocean surface CH, emissions in the Arctic (Kort et al., 2012;
Parmentier et al., 2013). This may in part be due to increased CH,4 production in these ocean surface waters,
as decreased sea ice cover can increase nutrient availability for methanogenesis (Damm et al., 2010).
Shrinking ice cover has further been linked to increased terrestrial Arctic CH, emissions, as open ocean has
a higher albedo than ice and may therefore cause higher temperatures in the region, which could enhance
CH,4 production and subsequent emissions from tundra regions (Parmentier et al., 2013, 2015).

Thawing of subsea permafrost on the East Siberian Arctic Shelf (ESAS) has also been suggested to enhance
CHj, release to the atmosphere (Sapart et al.,, 2016; Shakhova et al., 2014; Shakhova, Semiletov, Leifer, et al.,
2010). However, this conflicts with findings that subsea permafrost cores can contain insufficient CH, to fuel
the fluxes reported (Overduin et al., 2015; Shakhova, Semiletov, Salyuk, et al., 2010; Thornton, Geibel, et al.,
2016). It is also unlikely that CH4 emissions from the ESAS are from shallow gas hydrates (see section 7)
(Ruppel & Kessler, 2017), but geological sources (Shakhova, Semiletov, Leifer, et al., 2010), or the decay of
old organic matter (Sapart et al,, 2016) could play a role. The fate of CH, in the ESAS water column is still
debated, although high rates of oxidation are to be expected preventing significant amounts of CH, released
from the shelf from reaching the atmosphere (James et al., 2016; McGinnis et al., 2006; Ruppel & Kessler, 2017;
Shakhova et al., 2014).

Mean global sea levels under the RCP8.5 emissions scenario could rise by up to 1.4 m by 2100, relative to pre-
2000 mean sea levels (Carson et al., 2016). Increased coastal erosion by sea level rise, decreasing sea ice cover
and permafrost thaw under global warming (see section 6), will increase the supply of potential substrate for
methanogenesis in coastal sediments. Coastal erosion currently supplies ~15 Pg of previously stored “old”
permafrost C to Siberian coastal sediments, which can be buried or fuel methanogenesis in the coastal shelf
(Vonk et al., 2012). Sea level rise may also lead to submergence of current C-rich coastlines and thereby an
expansion of the area in the coastal zone with sediments capable of high CH, production. Among present-
day coastal environments, regions corresponding to drowned coastlines (i.e., drowned forests and peatlands)
are often characterized by gas-rich sediments (Borges et al., 2016; Dale et al., 2008; Judd, 2003). The inflow of
saline waters into current freshwater systems, however, will also increase the availability of 5042’ for AOM. It
is yet to be shown whether the increase in methanotrophy will compensate for the CH, production from
newly submerged C-rich coastal areas.

CH, fluxes from well-mixed estuaries and continental margins are highly sensitive to climate warming. For
example, water column mixing may enhance downward transport of heat to the sediment and upward trans-
port of CH, from the sediment to the surface waters, as demonstrated recently for the coastal zone of the
North Sea (Borges et al., 2016). Given the seasonality in temperature in many coastal areas in temperate
zones, the release of CH,4 to the atmosphere in such regions is expected to be highest in summer (e.g.,
Borges et al,, 2016; Martens & Val Klump, 1980). Stratified coastal systems, in contrast, are unlikely to act as
a major source of CH, to the atmosphere because most of the CH, is expected to be oxidized before it
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reaches the surface waters (Borges & Abril, 2011). In particular, fjords (flooded valleys with steep slopes,
formed by glacial activity) and fjérds (shallow flooded glacial depressions/valleys with gentle slopes), which
are mostly located at relatively high latitudes and account for ~40% of the surface area in estuarine environ-
ments at the global scale (Laruelle et al,, 2010), are generally stratified and likely not important as a source of
CH,4 (Borges & Abril, 2011). On continental margins, slow exchange between surface and bottom waters is
also mostly observed at relatively high latitudes (Reed & Harrison, 2016) but is not limited to specific types
of shelves (Laruelle et al., 2010). Other systems may act as large CO; sinks, significantly offsetting the radiative
forcing of the CH,4 released (e.g., Pohlman et al.,, 2017).

Changes in vegetation composition can also affect CH,4 fluxes in coastal areas. For example, shifts in man-
grove forest species composition have been shown to increase CH, fluxes (Mozdzer & Megonigal, 2013),
while relative methanotrophy rates in streams are higher in shaded reaches, so riparian vegetation dynamics
play an important role here (Shelley et al., 2017).

Higher organic matter production rates in lakes, estuaries, and the coastal zone due to eutrophication may
shift the biogeochemical zonation in sediments (Middelburg & Levin, 2009), which in some cases may also
be accompanied by bottom-water hypoxia or anoxia (Kemp et al., 2009). Such shifts in the zones of CH, pro-
duction and oxidation due to increased organic matter input can occur on timescales of years (Egger et al,,
2015; Rooze et al.,, 2016) or seasons (Crill & Martens, 1983; Gelesh et al., 2016; Martens et al., 1986) and
may increase the potential for release of CH,4 from sediments to overlying water and the atmosphere (Crill
& Martens, 1983; Gelesh et al., 2016). High temporal resolution observations are needed to quantify CH,4
release to the atmosphere from seasonally hypoxic systems and to identify the key controlling factors (e.g.,
the role of wind and storms and the breakdown of stratification) (Gelesh et al., 2016; Townsend-Small
et al,, 2016). Both temperature-driven increased CH, emissions from northern freshwater lakes and from
coastal waters have the potential to provide a positive feedback on a warming climate, with the former areas
being quantitatively most important (Borges et al., 2016; Wik et al., 2016).

6. Permafrost

6.1. The Permafrost Carbon Pool

Permafrost is soil, sediment, or rock material that is permanently exposed to subzero temperatures for at least
two consecutive years (Tarnocai et al., 2009). It is present beneath 24% (23 x 10° km?) of the Northern
Hemisphere land surface and is a significant part of boreal, Arctic, and alpine ecosystems (Camill, 2005;
Zhang et al., 1999). In the Southern Hemisphere, permafrost is mostly limited to a few alpine areas and is stu-
died more in the context of geohazards than C storage. Permafrost soils contain ~50% of global terrestrial
belowground organic C stocks (equivalent to 1,330-1,580 Pg C), which is roughly twice the amount of C cur-
rently present in the atmosphere as either CO, or CH,4 (Hugelius et al., 2014; Schuur et al., 2015; Tarnocai
et al.,, 2009).

Polar ecosystems are warming faster than anywhere else on the globe (Christensen et al., 2013). Global
climate models predict up to an 8°C rise in mean annual temperature in polar regions by 2100, compared
to a global average of 1.4-5.8°C (Allan et al., 2014; Camill, 2005). Estimates of net CH4 emissions from perma-
frost ecosystems are consistently between ~4-17 Tg CH, yr™' (or 1-7% of total annual natural CH, emissions)
(Kirschke et al., 2013; Walter Anthony et al., 2016; Wik et al., 2016). Although at present these emissions are
low on the global scale, they are predicted to rise due to permafrost thaw, which leads to increased substrate
availability for methanogens and the potential release of trapped CH,4 (Blanc-Betes et al., 2016; Leibman et al.,
2014; Lupascu et al.,, 2012; Schuur et al.,, 2015; Zona et al., 2016).

Permafrost ecosystems are currently considered a net C sink, taking into account CH, emissions and the CO,
sink of tundra ecosystems (Kirschke et al.,, 2013; Parmentier et al., 2013; Schaefer et al., 2011). As a result of ris-
ing temperatures driving permafrost thaw, it is estimated that tundra ecosystems will shift toward a net C
source by the mid-2020s (Schuur et al., 2015). Estimates of permafrost loss by the end of the 21st century have
ranged from 20 to 70% (Lawrence et al., 2012; Schaefer et al,, 2011; Schuur & Abbott, 2011; Wisser et al., 2011),
but more recent conservative estimates are closer to 5-15% (Schuur et al., 2015), stabilizing at 60% of the cur-
rent permafrost extent by 2300 if emission targets limit the global climate to 2°C of warming (Chadburn
etal, 2017).
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The exposure of frozen organic material can occur via gradual deepening (thawing) of the active (unfrozen)
layer (Hinzman et al., 2013; Romanovsky & Osterkamp, 1997) and by abrupt thaw mechanisms that destabi-
lize the land surface. The latter often occurs through the degradation of ice-rich material such as yedoma
(Walter Anthony et al., 2014), causing slumping, subsidence, and/or rapid erosion (collectively named ther-
mokarst) (Abbott & Jones, 2015; Schuur et al., 2015). Thermokarst processes can thaw large blocks of material
(ranging in size from a few square meters to square kilometers) in periods of days to years but can further
alter organic matter decomposition rates by perturbing local hydrological and soil conditions (Abbott &
Jones, 2015). The relative importance of thermokarst processes versus gradual permafrost thaw depends
on site-specific topography and threshold conditions (Schuur et al., 2015). Current estimates indicate that
thermokarst is present in 20% of the permafrost region (Olefeldt et al., 2016) but is expected to increase with
rising air temperatures.

Gradual and abrupt thaw can further be initiated or exacerbated by wildfire (see section 3.3), which is
predicted to be a more common feature in permafrost ecosystems under a warming climate (Flannigan
et al., 2005; Kasischke & Turetsky, 2006; Mack et al., 2011). Fire can burn off the insulating top layers of moss
and soil causing an increase in vertical thaw (Myers-Smith et al., 2007; Schuur et al., 2008). It can also desta-
bilize soil layers and structures resulting in thermokarst development (Schuur et al., 2008). After several forest
fires in interior Alaska, soil CH4 emissions increased by between 7 and 142%, indicating accelerated perma-
frost thaw and abundant microbial resources (Kim, 2003).

6.2. Permafrost Thaw and the Production of Methane

As permafrost ecosystems thaw, temperature, soil moisture, and substrate availability will on average
increase, boosting in situ microbial activity (Blanc-Betes et al., 2016; Hofmann et al,, 2016; Valentine et al,,
1994) as old permafrost contains degradable organic C (Drake et al., 2015; Spencer et al, 2015).
Methanogens are natural inhabitants of permafrost soils, and methanogenic activity has been measured at
temperatures as low as —20°C (Rivkina et al.,, 2000). Acetate and hydrogen are considered the most significant
substrates for CH, production in permafrost soils (see section 2) (Metje & Frenzel, 2007). Permafrost thaw is
known to increase the relative diversity, abundance, and activity of methanogens within days to months
(Allan et al., 2014; Mackelprang et al., 2011; Rooney-Varga et al., 2007). Further thaw progression and warming
is often associated with a shift from acetoclastic to hydrogenotrophic methanogenesis (Allan et al., 2014;
Barbier et al., 2012; Kotsyurbenko, 2005; Kotsyurbenko et al., 2007; Metje & Frenzel, 2007). This change could
be due to changes in pH (Kotsyurbenko et al., 2007) or that hydrogenotrophic methanogens are often both
cold and warm tolerant, whereas acetoclastic methanogens are more temperature restricted (Allan et al.,
2014; Rooney-Varga et al., 2007). Methanogenesis rates in permafrost soils are stimulated by warming tem-
peratures, with optimum ranges observed between 18 and 30°C (Chen et al,, 2015; Metje & Frenzel, 2007;
Tveit et al., 2015). Experimental temperature rises of 10°C have caused CH,4 production to increase by 2 orders
of magnitude, with 30°C causing CH,4 production to increase by as much as 6 orders of magnitude (Metje &
Frenzel, 2007; Rivkina et al.,, 2004; Tveit et al., 2015); short-term temperature rises of this magnitude above
zero are possible during the Arctic growing season and could become more common as regional air tempera-
tures increase (Parmentier et al., 2013; Schuur et al., 2015; Treat et al., 2015).

Aerobic methanotrophs can consume up to 90% of the CH, that is produced in permafrost soils (Popp et al.,
2000). Permafrost soils are dominated by type | methanotrophs (see section 2) as these thrive at low tempera-
tures (Khmelenina et al., 2002; Knoblauch et al., 2008; Wagner et al., 2005), while several studies found type I
to dominate thawing permafrost (Barbier et al., 2012; Blaud et al., 2015; Knoblauch et al., 2008; Mackelprang
etal, 2011). Further, pmoA (particulate methane monooxygenase; see section 2.2.1) gene copy numbers were
higher in active layers than in permafrost indicating an increase in methanotroph population during thaw
progression (Yergeau et al., 2010). Rising temperatures are likely to stimulate aerobic CH, oxidation (He
et al, 2012b; Kip et al,, 2010; Knoblauch et al., 2008; Metje & Frenzel, 2007). However, mesocosm experi-
ments indicate that temperature-induced increases in CH, production cannot be fully compensated by
methanotrophy, observing a drop of 98% to 50% oxidation efficiency from 5 to 25°C (van Winden et al,,
2012), possibly due to lower CH, solubility at higher temperatures increasing the occurrence of ebullition
over diffusion. The importance of anaerobic methanotrophs (see section 2.2) is not yet well explored at low
temperatures, although this process could contribute to CH4 consumption in permafrost soils (Kao-Kniffin
et al., 2015).
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While temperature is the main controlling factor for CH4 production in permafrost soils, hydrology also plays
a major role (Graham et al., 2012; Hofmann et al,, 2016; Valentine et al., 1994; Wagner et al., 2007), with water
table height positively correlated with CH4 production (Blanc-Betes et al.,, 2016; Hofmann et al., 2016; Walter
et al, 2001; Zhuang et al., 2004). The long-term in situ effect of hydrology is illustrated by an 18 year long
snow accumulation study on Arctic tundra (Blanc-Betes et al., 2016), which showed that deeper snow cover
caused both higher soil wetness and higher soil temperatures, resulting in a net CH, efflux. Climate change is
expected to result in an increase in precipitation in the Arctic (Lawrence et al., 2012). This could have a posi-
tive effect on water table heights compared to temperate regions due to shallow active layers and generally
mild topography in Arctic lowlands. Both the water table and the temperature therefore have an important
controlling effect on CH,4 production (Wrona et al., 2016), which may be reflected in the methanogenic com-
munity abundance and activity.

6.3. Mechanisms of Methane Emission

CH, can be transported vertically or laterally via multiple pathways (see section 3.1). Thawed organic material
can also be transported laterally via physical processes such as erosion and lateral transport by rivers (Dean
etal., 2016; Drake et al., 2015; Tank et al., 2016) and subjected to microbial decomposition in the environment
in which it settles (Vonk et al.,, 2012). Coastal permafrost zones are particularly vulnerable to erosion in
response to sea level rise due to their high ground ice content (Glinther et al.,, 2015; Vonk et al,, 2012), and
this has the potential to provide large amounts of organic material to shallow coastal zones (Tanski et al.,
2016; Vonk et al.,, 2012), fueling CO, and CH,4 emissions (see section 5.3) (Fritz et al., 2017; Lantuit et al.,
2013). Methanogenesis has been observed in unfrozen lake sediments (taliks) (Walter Anthony et al., 2014),
and saturated streambeds and riparian zones (Street et al., 2016), each of which can include displaced thaw
material. CH, concentrations in permafrost stream systems can be highly variable (e.g., Dean et al., 2016), but
hot spots of CH, emissions have been observed in small creeks draining permafrost soils (Bussmann, 2013),
and this CH,4 can then be transported to the ocean and/or emitted to the atmosphere (Stanley et al., 2016).

Little is known about microbial communities in aquatic sediments created by permafrost thaw. This is a sig-
nificant knowledge gap since lake ebullition is the dominant form of CH, release from terrestrial permafrost
zones (Bastviken et al., 2011; Kirschke et al., 2013; Wik et al,, 2016). It is also not known whether lake area is
expected to increase (Walter Anthony et al., 2016) or decrease (Smith et al., 2005; van Huissteden et al.,
2011) and what effect this might have on future CH4 emissions. Previous research shows the presence of
active methanotrophs in these systems (He et al.,, 2012a). Methanotrophic activity in these systems responds
positively to temperature increases (He et al., 2012a, 2012b), suggesting that this microbial CH, “filter” will
continue to operate effectively as permafrost regions warm. These communities are sensitive to environmen-
tal conditions (He et al., 2012a) and will therefore be vulnerable to significant changes such as thermokarst
development and shifts in vegetation cover. Further, as permafrost thaws, terrestrial CH4-oxidizing commu-
nities can be transferred to lakes at increasing rates, potentially leading to a net increase in landscape-scale
methanotrophy rates (Osudar et al., 2016).

Vegetation also plays an important role in CH4 emissions from permafrost environments through the direct
transfer of CH, from deeper soil layers to the surface (Bastviken et al.,, 2004), the stabilization and destabiliza-
tion of permafrost ice complexes (Nauta et al., 2015), and via root exudates, providing substrate for metha-
nogenesis (see section 3.2). Changes in vegetation due to climate change have already been observed in
the form of shrubification (ElImendorf et al., 2012; Lantz et al., 2013) and shifts in the forest-tundra ecotone
(Payette et al., 2001). It has been demonstrated that the removal of shrubs from a tundra ecosystem in north-
east Siberia changed the landscape from a CH, sink to a CH, source (Nauta et al., 2015).

There are also geologic CH, stores trapped under some permafrost areas (Walter Anthony et al., 2012). These
geologic CH, stores were produced millennia ago by microbial and thermogenic processes, then trapped
under advancing ice sheets and permafrost, and as a result are generally radiocarbon dead (i.e,, more than
~50,000 years old) (Etiope, 2012; Walter Anthony et al., 2012). Current fluxes to the atmosphere from these
stores in permafrost regions are estimated to be around 2 Tg CHy yr~' (Kohnert et al,, 2017; Walter
Anthony et al., 2012). As ice sheets retreat and permafrost thaws under predicted climate warming, it is pos-
sible that CH, fluxes to the atmosphere from these stores may increase, contributing to the CH, climate feed-
back (Kohnert et al., 2017; Walter Anthony et al., 2012). However, the size of these stores, how long such
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emissions could be sustained, and therefore their potential impact on the global climate are unknown, and it
has been recently suggested that CH, emissions from such stores are unlikely to influence future climate
(Petrenko et al., 2017).

6.4. Sensitivity of Permafrost Methane Fluxes to Climate Change

The direct quantification of CH,4 climate feedbacks is rare. An effective identifier of old C (i.e., C sequestered in
organic matter prior to 1955) is radiocarbon (Dean et al., 2017). This has been applied to permafrost C stores
that are converted to CH4 and other forms of mobile C (Dean et al., 2018; Hilton et al., 2015; Raymond et al.,
2007; Schell, 1983; Schuur et al., 2009; Walter Anthony et al.,, 2016). A recent study applied this method to esti-
mate a direct permafrost CH, climate feedback of 0.1 to 0.3 Pg C via ebullition from thermokarst lake expan-
sion in the Alaskan and Siberian yedoma region over the past 60 years (Walter Anthony et al., 2016). In
contrast, dissolved CH, in lakes in yedoma permafrost systems in Alaska ranged from modern to old
(3,300 years before present) in age (Elder et al.,, 2018) but did not contain the very old (~50,000 years and
older) C that is found in yedoma permafrost C stores (Walter Anthony et al., 2016). In nony-edoma tundra sys-
tems, old permafrost C may be more likely to be released as CO, (Schuur et al., 2009) than CHy, as old CH,
derived from old permafrost was not observed in surface emissions despite considerable thaw occurring
(Cooper et al., 2017). Further, if 10°C warming occurred, C release as CO, has been shown to have a larger
effect on the overall permafrost carbon feedback than CH, (after taking into account the higher radiative for-
cing capacity of CH,), due to higher rates of C release to the atmosphere under dry, oxic conditions (when
CO, is released) than wet, oxygen-poor conditions (when CH, is released) (Schadel et al., 2016). However,
whether permafrost regions release CO, or CH, is dependent on hydrology and whether these regions will
become wetter or drier under future climate change is by and large unknown (Schadel et al., 2016; Schuur
et al, 2015).

Recent modeling work suggests that the CH, climate feedback through to the year 2100 from permafrost
regions may be relatively small compared to other feedbacks discussed in this review (see section 8.1)
(Gao et al.,, 2013; Lawrence et al.,, 2015; Schaefer et al., 2014). However, these studies use models that likely
do not adequately represent microbial responses in the Arctic. Modeling based on microbial dynamics pre-
dicts a much larger feedback from permafrost environments (30-90 Tg CH,4 yr_1) (McCalley et al., 2014) than
models lacking microbial activity (6-15 Tg CH, yr~") (Gao et al., 2013); incorporating deep C deposits and
thermokarst activity into nonmicrobial models produces a slightly higher range (8-26 Tg CH, yr™') by
2100 (Schneider von Deimling et al., 2015). These large-scale physically based models also do not account
for small-scale processes such as anoxic and oxic zones within soil pores that are temporally variable yet
may play an important role in microbial CH, production and oxidation (Ebrahimi & Or, 2017) or local-scale
processes such as thaw-induced land subsidence. These processes may be important at regional scales in bal-
ancing soil drying (promoting CH, oxidation) and soil wetting (promoting CH,4 production) (Helbig et al.,
2016; Koven et al., 2015). The potential strength of the permafrost CH, feedback may be considered small
through to 2100 but remains uncertain at these and longer timescales.

7. Methane Hydrates

Gas hydrates are solid, ice-like substances made of water cages stabilized by gas molecules through van der
Waals-type (weak, charge-based) attraction. Since the main gas is CH,4, gas hydrates are often referred to as
methane hydrates or clathrates: the general name for structured cage-like substances hosting gas molecules
(Kvenvolden, 1993). Although the CH4 can come from various sources, almost all is eventually derived from
biologically produced organic matter. CH, is primarily microbially generated within or below the zone of
occurrence, supplemented with thermogenic CH, produced at high temperatures at depth (Archer, 2007;
Ruppel, 2011; Wallmann et al., 2012).

Methane hydrates have received much attention because of their potential as an energy resource and their
possible role in submarine hazards, the global C cycle, and climate change (Archer et al.,, 2009; Boswell &
Collett, 2011; Kvenvolden, 1993; Ruppel & Kessler, 2017). Recently, thorough reviews specifically dedicated
to methane hydrate-climate interactions have been published and we refer the reader to these for a more
complete literature coverage and detailed treatment and assessment (Mestdagh et al.,, 2017; Ruppel &
Kessler, 2017).
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7.1. Distribution and Size of Methane Hydrates

Methane hydrates form where thermodynamic conditions are favorable and where in situ CH, generation or
external CH, supply is sufficient. Thermodynamic (pressure-temperature) conditions govern the gas hydrate
stability zone (GHSZ), which provides a first-order prediction for minimum and maximum depth of methane
hydrate occurrences in oceanic and permafrost sediments (Buffett & Archer, 2004; Hester & Brewer, 2009; Xu
& Ruppel, 1999). In the ocean, the GHSZ typically starts at water depths of 300-600 m and extends down to a
few hundred meters below the seafloor. In permafrost systems, the GHSZ starts shallower because of lower
surface sediment temperatures (Hester & Brewer, 2009; Ruppel & Kessler, 2017). The actual occurrence of gas
hydrates within the GHSZ depends on availability of CH, because CH, concentrations should exceed their
solubility (Mestdagh et al., 2017; Xu & Ruppel, 1999). CH, availability is governed by local CH, generation
(and, therefore, the availability of labile organic C), CH,4 losses (transport and consumption), and CH,4 supply
from below by diffusion, advection, and bubble transport (Archer, 2007; Archer et al., 2009; Ruppel & Kessler,
2017; Wallmann et al., 2012; Xu & Ruppel, 1999).

Published estimates of the global methane hydrate inventory vary over orders of magnitude (100 to
>63,000 Pg C) (Archer et al., 2009; Boswell & Collett, 2011; Buffett & Archer, 2004; Dickens, 2011; Milkov,
2004; Wallmann et al,, 2012). Recent estimates vary from >455 Pg C (Wallmann et al,, 2012) to 3,830 Pg C
(Hunter et al., 2013), with other estimates in between: 550 (Pifiero et al., 2013), 995 (Burwicz et al., 2011),
1146 (Kretschmer et al, 2015), 1500 (Boswell & Collett, 2011), 1800 (Johnson, 2011), and 2,630 Pg C
(Yamamoto et al., 2014). This variability is due to our limited understanding of the governing factors, scarcity
of data, and differences in upscaling procedures, that is, whether based on the volume of sediments within
thermodynamic stability zone (GHSZ) or the actual volume of methane hydrate occurrence in sediments or
based on more mechanistic approaches incorporating CH, production, consumption and transport, geother-
mal gradient information, and methane hydrate stability (Archer, 2007; Archer et al., 2009; Buffett & Archer,
2004; Dickens, 2011; Hunter et al., 2013; Pifero et al., 2013; Wallmann et al., 2012; Xu & Ruppel, 1999).

7.2. Sensitivity of Hydrates to Climate Change

The pressure and temperature dependence of gas hydrates implies that they may respond to global warming
and associated changes in sea level. Increasing temperatures will eventually cause hydrate dissociation to gas
and water, and if the liberated CH, is not microbially consumed and escapes from the sediments and enters the
ocean or atmosphere, it may result in a positive feedback loop: warming causes CH, release, and more Cin the
atmosphere/ocean system causes more warming. This mechanism was identified more than two decades ago
(Gornitz & Fung, 1994; Harvey & Huang, 1995; Kvenvolden, 1988) and has been recognized in geological records
(Dickens, 2011; Dickens et al.,, 1995; Kennett et al.,, 2003; Sluijs et al., 2007). However, there is still very limited
understanding, and much uncertainty and debate, about the rate and impact of hydrate dissociation on climate
and the sensitivity of methane hydrates to climate change (Mestdagh et al.,, 2017; Ruppel & Kessler, 2017).

Climate warming will cause melting of ice sheets, thawing of Arctic permafrost, and warming of ocean
(bottom) waters and accelerate sea level rise (Church et al., 2013). Ocean margin hydrates are more vulner-
able to destabilization due to rising temperatures than stabilization due to sea level rise-induced pressure
increases (Archer et al., 2009; Mestdagh et al., 2017). Warming of ocean bottom waters and surface sediments
will eventually lead to warming of sediment within the GHSZ and thus to dissociation of hydrates, but only
after hundreds to thousands of years. This delay is caused by the slow heat transfer within sediments, the
heat consumption by the endothermic dissociation reaction, and the depth distribution of gas hydrates
(Archer et al.,, 2009; Hunter et al., 2013; Mestdagh et al., 2017; Ruppel & Kessler, 2017; Xu & Ruppel, 1999).

Whether the CH, released by hydrate dissociation in subsurface sediments reaches the atmosphere is highly
uncertain due to the presence of multiple sinks (Archer et al., 2009; Dickens, 2011; Hunter et al., 2013; Ruppel
& Kessler, 2017). Within the GHSZ, CH, released at one depth may be incorporated into methane hydrates at
another depth, and CH4 may be physically trapped (in undersaturated pores or bubbles). By far the majority
of CH,4 released upon hydrate dissociation will be consumed by methanotrophs in the sediments by anaero-
bic oxidation of methane (S-AOM; see section 2.2) (Boetius et al., 2000; Knittel & Boetius, 2009). Any CH,
escaping microbial consumption in the S-AOM zone and diffusing upward will subsequently be subject to
aerobic methanotrophic activity in oxygenated surface sediments. CH,4 release from sediments to bottom
waters is therefore limited to seepage, pockmarks, and other areas of focused CH, release where this
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Figure 5. Conceptual diagram of methane hydrate reservoir and permafrost distribution based on Ruppel (2011), Ruppel and Kessler (2017), and Mestdagh et al.
(2017). Five types of hydrate reservoirs are shown: subglacial hydrates, hydrates associated with onshore and offshore permafrost, and hydrates in upper and
lower continental slopes. A sixth category, deep-sea hydrates, is not shown because of its low climate sensitivity (Ruppel & Kessler, 2017). Upper continental slope
and relic offshore permafrost associated hydrates are most vulnerable to climate change and may dissociate, but almost all CH, liberated will be consumed in
sediments and ocean before reaching the atmosphere. Note that the “gas hydrate stability zone” shows only potential methane hydrate occurrence.

microbial CH, filter is largely bypassed (Boetius & Wenzhofer, 2013; James et al., 2016). CHsbubbles emitted
from the sediment floor may ascend in the water column but will not make it to the sea-air interface at water
depths more than tens of meters because of bubble-water gas exchange and oxidation (Archer et al., 2009;
Hester & Brewer, 2009; James et al.,, 2016; McGinnis et al., 2006), as was seen following the 2010 BP Deepwater
Horizon CH,4 blowout (see section 5.3). Similarly, CH, derived from permafrost-associated gas hydrates will be
consumed by methanotrophs living at and near the surface of permafrost soils (see section 6.2) (He et al.,
2012a). Accordingly, climate warming may cause gas hydration dissociation at depth, but with a delay of
hundreds to thousands of years, and only a very small fraction of the CH, released will eventually reach
the atmospheric (James et al., 2016; Ruppel & Kessler, 2017). Radiocarbon measurements of dissolved CH,4
in marine waters over the Beaufort Shelf in the US. demonstrated that CH,; from thawing subsea
permafrost and methane hydrates is not currently contributing to marine CH; emissions to the
atmosphere (Sparrow et al., 2018).

In the context of climate change, it is instructive to divide hydrate reservoirs into five categories because of
their differential susceptibility to climate change (Figure 5). This partitioning follows recent updates
(Mestdagh et al., 2017; Ruppel & Kessler, 2017) on the original categories of Ruppel (2011); that is, subglacial
hydrates have been added and deep-sea hydrates have been removed because the latter are relatively insen-
sitive to climate change (Ruppel & Kessler, 2017). Subglacial hydrates in Antarctica are estimated to contain
80-400 Pg C (Wadham et al,, 2012) but are likely not very sensitive to climate change over the next centuries
(Ruppel & Kessler, 2017). Gas hydrates associated with onshore permafrost store are about 20 Pg C (Ruppel,
2015), but these are deeply buried and therefore will remain relatively stable under climate warming
(Mestdagh et al., 2017; Ruppel & Kessler, 2017). Relic offshore permafrost-associated hydrates in the Arctic,
formed from inundation of permafrost tundra, are likely more sensitive than onshore hydrates because the
permafrost layer is thinner (Mestdagh et al., 2017; Ruppel, 2011). Hydrates in the upper continental slope
are most vulnerable to climate change, while those in the lower continental slope (accounting for 95% of
the total continental slope inventory) have low sensitivity because these hydrates are well within their ther-
modynamic stability zone, and bottom-water warming will be less in the deeper ocean during the coming
decades (Kretschmer et al.,, 2015; Mestdagh et al., 2017; Ruppel,2011; Ruppel & Kessler, 2017).

Kretschmer et al. (2015) combined Earth system model bottom-water temperature projections with a
mechanistic hydrate occurrence model and found that upper continental slope sediments (water depth
300-700 m) and Arctic deposits were the most sensitive to warming. They calculated a within sediment
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release of 473 Tg CH, for the next 100 years. On the one hand, this number may be too low because it is based
on a conservative methane hydrate reservoir size (1,146 Pg C), but on the other hand, this model did not
include microbial sinks within the sediments and thus substantially overestimates CH, release to the
ocean-atmosphere system. This potential release of 4.73 Tg CH, yr™' is very small compared to the total
anthropogenic CH, release of 335 Tg CH, yr~ ' (Kirschke et al.,2013), but consistent with present-day hydrate
source of 2-6 Tg CH, yr~ " used in contemporary global CH, budgets (Kirschke et al., 2013; Saunois, Bousquet,
et al, 2016). However, there is no conclusive or direct evidence to attribute any significant atmospheric CH,4
to release from hydrates (Ruppel & Kessler, 2017).

7.3. Implications of Methane Hydrate Dissociation

Although only a minor fraction of the CH, released from hydrate dissociation upon global warming will even-
tually be emitted to the atmosphere, this CH,4 release can nevertheless have substantial impact on global
climate and ocean chemistry on timescales of thousands of years (Archer et al., 2009). Sediment CH, release
enhances substrate availability for aerobic methanotrophy in ocean waters and thus increases O, consump-
tion. This process together with a warming-induced decreased solubility of O, and a reduction in ocean
ventilation might lead to expanding ocean hypoxia (Yamamoto et al. 2014). Aerobic methanotrophy
produces CO,, which is estimated to increase atmospheric CO, concentrations by about 100 ppm for a total
release of 1,600 Tg C over 13,000 years (Boudreau et al., 2015). This also adds about 0.4-0.5°C to the long-term
impact of anthropogenic C on temperature (Archer et al., 2009), enhances ocean acidification (Biastoch et al.,
2011; Boudreau et al., 2015), and may interact with other carbon cycling processes (Ruppel & Kessler, 2017).

8. Assessing Global Climate Methane Feedbacks
8.1. Timeline of Methane Feedbacks

The global CH, climate feedback is ultimately controlled by the balance between microbial production and
consumption and how both processes will evolve under changing environmental conditions. In Figure 6,
we combine the information from the previous sections to compare the magnitude and timing of CH,4
production, consumption, and release from the different environments discussed in this review. The
magnitudes of annual emission estimates are based on the high-end GHG emission IPCC scenario RCP8.5
(or similar), representing sustained high emissions (a common scenario in the modeling literature), while
it is not yet clear which emissions trajectory we are currently following (Rockstrom et al., 2017; Saunois,
Jackson, et al., 2016).

Microbial communities respond quickly to changing environmental conditions, with shifts in community
composition and/or CH4 emissions generally seen within a month (e.g., Treat et al,, 2015). The time taken
for methanogens to colonize areas where favorable CH,4 producing conditions have developed can be the
critical factor (e.g., Bond-Lamberty et al., 2016; Schadel et al., 2016). The response of vegetation is considered
to be slower, with 10-50% of global vegetation considered “highly vulnerable” to change underpredicted
future climate scenarios (Gonzalez et al., 2010). Global fire frequency is expected to increase (Collins et al.,
2013; Stocks et al., 1998); at the same time fire occurrence may decrease as a result of anthropogenic land
use changes (Andela & van der Werf, 2014; Knorr et al., 2016). These effects on fire regimes are variable in
both frequency and severity. Fire will indirectly affect landscape CH,4 emissions and make future predictions
challenging. For example, predictions of fire occurrence in the boreal North American biome until 2100 vary
from +25 to +350% (Amiro et al., 2009; Bachelet et al., 2005; Balshi et al., 2009; Wotton et al., 2010).

We include anthropogenic CH4 emissions in Figure 6 for context, and it is clear that these could remain the
dominant source of emissions if we continue along a high-emission scenario (Riahi et al., 2011); recent work
suggests that anthropogenic GHG emissions may be dropping below this trajectory, though (Saunois,
Jackson, et al., 2016).

After anthropogenic emissions, wetlands will remain the most dominant natural CH, source to the atmo-
sphere. Wetland CH4 emissions are predicted to increase by 33-60% by the year 2100 (Figure 6). These values
are based on the impact of expected increases in atmospheric CO, being the primary driver of wetland CH,4
feedbacks (Melton et al., 2013). However, these estimates do not include water level changes or direct tem-
perature effects, which have a slight negative and a slight positive effect, respectively. A recent model
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Figure 6. Estimated timescales of the potential CH4 climate feedbacks discussed in this review; the timescale indicates the response time of the mechanisms of
change to climate forcing and the immediacy of the impacts of these changes to CH,4 emissions from different environments. Present global CH4 emissions
(Kirschke et al., 2013; Saunois, Bousquet, et al., 2016) are included at the top right, followed by the potential future emission magnitudes along the timescale. The
future emission magnitudes are based on estimates from a range of studies for each environment under RCP8.5 or similar scenarios; the RCP8.5 scenario 2100
anthropogenic CH4 emissions are shown for reference (Riahi et al., 2011), but are not included beyond 2100 as we hope that anthropogenic emissions will have been
curbed by then. Only potential CHy4 release from methane hydrates and oceanic sinks are shown beyond 2100 because their impact prior to this is considered
minimal (see section 7); the estimated permafrost emissions up to 2300 are shown for context. The emission mechanism timescales are based on microbial pro-
duction (Bond-Lamberty et al,, 2016; Treat et al., 2015), microbial consumption (Kwon et al., 2016; Merbold et al.,, 2009; van Winden et al., 2012), vegetation change
(ElImendorf et al.,, 2012; Gonzalez et al., 2010; Lantz et al., 2013; Nauta et al., 2015), and fire regime (Harris et al., 2016; Moritz et al., 2005). The 2100 emission estimates
for each environment are based on wetlands (Melton et al,, 2013; Zhang et al,, 2017), freshwaters (Tan and Zhuang, 2015, and Wik et al., 2016, estimates for northern
lakes—above 50°N, as a proxy for all lakes, estuaries, and coastal sediment emissions; see section 5—are added to current estimates of freshwater emissions in
Saunois, Bousquet, et al., 2016), permafrost (Gao et al., 2013; Koven et al., 2015; Lawrence et al.,, 2015; McCalley et al., 2014; Schaefer et al., 2014), methane hydrates
(Kretschmer et al., 2015; Ruppel & Kessler, 2017), soil sinks (Curry, 2007; Ridgwell et al., 1999), and the atmospheric OH sink (Voulgarakis et al., 2013). The 2300
emission estimates for permafrost are from Lawrence et al. (2015); the 2300 methane hydrate emission estimates show both the potential release of CH, from
hydrates into marine sediments and the ocean (purple) (Kretschmer et al., 2015; Ruppel & Kessler, 2017), and the potential oceanic sink for this CH4 (dark blue)
(Ruppel & Kessler, 2017), indicating the low likelihood of a signifcant climate feedback from methane hydrate destabilization in the near to intermediate long term.

ensemble that incorporates temperature effects predicted a similar range of wetland CH4 emissions by 2100
(338 + 28 Tg CH, yr™', RCP8.5) but a larger percentage increase relative to the ensemble’s current predicted
level of CH,; emissions from wetlands (80-113%) (Zhang et al., 2017). We indicate an immediate feedback
response from wetlands as rising precipitation increases wetland areas and the area of individual water
bodies, which may already be occurring in the tropics (Nisbet et al, 2016), but this will be balanced
between drought and increased water saturation (O'Connor et al., 2010). This does not necessarily suggest
that the balance of CH4 production versus consumption will shift in favor of increased production; it could
simply represent the expansion of wetland areas, which are currently net CH,4 sources.

There is large uncertainty in current and future CH, emissions from freshwater systems, as can be seen in the
range of values provided in Figure 6. We exclude marine sources here as current estimates of oceanic CH,
emissions are low (~14 Tg CH, yr’1; Table 1) (Saunois, Bousquet, et al., 2016), and there are few predictions
of future marine emissions. Emissions from freshwaters are predicted to increase primarily because of longer
ice-free seasons in northern lakes (above 50°N) meaning longer periods of CH, production and emissions
(Wik et al., 2016). Increased methanogenesis in northern lakes driven by rising temperatures may well be
matched by methanotrophy in the sediment and water columns (He et al., 2012b).
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We also exclude permafrost CH, emissions from the contemporary budget as conservative estimates render
them relatively insignificant on current scales (Kirschke et al., 2013), while less conservative estimates (e.g.,
Walter Anthony et al., 2016; Wik et al., 2016) are not so easily accommodated in current regional top-down
budgets (Sweeney et al., 2016; Thompson et al., 2017). However, CH4 emission from permafrost environments
will likely increase by 2100 and may become even more significant if warming continues through to 2300 and
beyond (Figure 6). Several studies combine northern wetlands and permafrost areas into a single group (e.g.,
McNorton, Gloor, et al., 2016). Here we separate the wetland and permafrost regions (Figure 6), because per-
mafrost thaw has the potential to be a longer-term feedback mechanism beyond 2100 (Figure 6), with a sig-
nificantly larger soil C pool compared to wetlands. This so-called “permafrost carbon bomb” (Treat & Frolking,
2013) hypothesis, of both CO, and CHj, release, has been highlighted as a significant process in past global
climate shifts (e.g., DeConto et al., 2012).

In the contemporary CH4 budget, we combine the soil sink with the total sinks term. In the 2100 budget, we
use the same soil sink values as contemporary estimates but separate soils from the atmospheric OH sink
because it is not yet known whether the soil sink will decrease (Blankinship et al,, 2010) or increase (Lau
etal,, 2015) in response to climate change. The atmospheric OH sink, however, is intrinsically linked to atmo-
spheric CH, concentrations and could decrease in conjunction with rising atmospheric CH, (Voulgarakis et al.,
2013); however, lags in atmospheric OH response to fluctuations in CH, are a source of considerable uncer-
tainty (McNorton, Chipperfield, et al., 2016; Rigby et al., 2017; Turner et al., 2017).

Methane hydrates are not expected to contribute significantly to global CH, emissions in the near or long-
term future (Ruppel & Kessler, 2017). This is mainly due to the large CH, sinks present in sediments, ocean
waters, and soils (in permafrost associated hydrates). To predict the potential climate feedback from methane
hydrates beyond 2100, we provide a range of possible values of CH, release from hydrates to oceanic bottom
waters (not the atmosphere) under future climate warming (the large range is a result of the uncertain size of
this CH4 reservoir; see section 7). We then include an estimate of the oceanic sink term (Ruppel & Kessler,
2017) to demonstrate that the potential magnitude of these sinks is much larger than the estimated CH,4
release from hydrates to ocean waters. This sink indicates that actual CH, emissions to the atmosphere result-
ing from methane hydrate dissociation are insignificant in the context of the contemporary and 2100 global
CH,4 budgets (Figure 6). It is possible that in the long term (i.e., by 2300 and beyond; Figure 6), the CO, pro-
duced from the oxidation of CH, release from hydrates could have major consequences, including increased
CO, concentrations in the atmosphere and ocean acidification (see section 7), but large CH,4 emissions to the
atmosphere derived from methane hydrate dissociation are unlikely.

8.2. Combined Methane Climate Feedback Effect

The feedbacks discussed in this review operate in a net positive direction, and it is likely that they will act
cumulatively and influence one another. The fastest occurring feedback effect could increase warming
(including other non-CH, feedbacks), causing other feedbacks to take affect more quickly than expected
(Figure 7). We indicate the potential timing and magnitude of these feedbacks in Figure 6 and how these
could interact in Figure 7. Enhanced microbial and fire-induced pyrogenic CH, release could in the short term
speed up climate feedback responses in wetland and marine and freshwater systems. This would in turn
enhance the response of permafrost systems and the global CH, climate feedback (Figure 7).

Climate-driven environmental change impacts the global CH4 cycle in many ways (Figure 7). For example,
increasing temperatures regulate concentrations of reactive nitrogen species, oxygen, and organic C in soil
pore water, altering primary production by plant communities, all of which regulate methanogenic activity
(White et al.,, 2008). In contrast, in a series of boreal lakes, nutrient availability (particularly phosphorus) and
microbial community interactions controlled methanogenesis (Denfeld et al.,, 2016). As shown in the previous
sections, CH4 production can also be offset as environmental conditions change. Sea level rise could drown
coastal organic-rich soils, converting these areas to CH, sources, but can be counterbalanced by the simulta-
neous influx of SO4>~ from seawater, which is utilized for AOM (see section 5).

Significant feedbacks are currently expected from the Arctic region, as temperatures are expected to rise at a
higher rate in the region compared to the global mean (Christensen et al., 2013). But while field campaigns
have indicated locally significant CH, emissions from Arctic lakes (Wik et al., 2016) or the East Siberian Arctic
Shelf (Shakhova et al., 2014), there is to date no clear evidence that Arctic CH, emissions are increasing over
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Figure 7. CH,4 climate feedback schematic showing how the feedback mechanisms discussed in this review relate to each other: each feedback mechanism (within
the yellow circle) is forced by climate change, altering CH4 emissions to the atmosphere. Direct CH, feedbacks are indicated with green arrows, and indirect
feedbacks are within the yellow circle. After production, CHy is exposed to oxidation before being emitted to the atmosphere where it is then consumed by the
atmospheric CHy sink. The amount of CHy in the atmosphere is known as the atmospheric CH4 burden and, prior to its oxidation in the atmosphere, causes radiative
forcing (the greenhouse effect) that feeds back to the overall climate forcing (completing the positive CH,4 climate feedback loop shown in light blue).

time. In fact, atmospheric measurements at long-term monitoring stations show no significant increase of
Arctic CH,4 emissions (Bergamaschi et al., 2013; Bruhwiler et al., 2014; Dlugokencky et al., 2009; Sweeney
et al,, 2016). This suggests that at present, Arctic emission increases are negligible or small in absolute
terms (Tg CH,4 yr’1). It is possible that the additional CH,4 that could be produced at higher temperatures is
removed before reaching the atmosphere and/or that the oxidative capacity of sinks also increases in line
with production. For example, Fisher et al. (2011) observed seepage of thermogenic (not related to climate
change) CH,; from the seafloor off the coast of Spitsbergen, but no corresponding increase in the
atmosphere. Further, these regions are also CO, sinks, with CO, uptake providing a negative radiative
forcing 231 times greater than the positive forcing of CH4 emissions to the atmosphere (Pohlman et al., 2017).

The main drivers of CH4 emissions and their sensitivity to climate change have largely been identified for spe-
cific environments, demonstrating that the combined environmental controls on net CH, emissions cannot be
easily generalized for different ecosystems, and must be resolved individually. Quantifying combined feedbacks
is highly challenging and requires the use of sophisticated Earth System Models (ESMs). However, environment-
specific controls on microbial activity and net CH, fluxes mean that the incorporation of the global CH, climate
feedback into ESMs is a major challenge (Ebrahimi & Or, 2017; Wieder et al., 2013; Xu et al,, 2014).

8.3. Limitations and Future Directions

The interconnected nature of the feedbacks discussed in this review, and their mismatched timelines, makes
complete understanding of their interactions complex and reliable predictions difficult (Khalil & Rasmussen,
1993). We have focused here on CH, climate feedbacks from a bottom-up perspective, that is, based on
observations at the Earth’s surface. However, there is considerable disagreement between the global CH,4
budgets derived from these observations and those derived from atmospheric, or top-down, approaches
(Table 1). The gradual decrease of the growth rate of atmospheric CH,4 in the 1990s toward the relatively
constant levels in 2000-2007 has been interpreted as an indication for a new steady state where global
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emissions did not increase over this entire period (Dlugokencky et al., 2003). This leaves little room for
increasing emissions from natural feedbacks on the global scale, unless they are offset by decreasing anthro-
pogenic emissions, or an increased sink term.

The renewed increase in atmospheric CH,4 since 2007 is evidence of a new global-scale imbalance between
sources and sinks. Increased emissions from the feedbacks discussed in this review would increase this imbal-
ance in the future, but it is unclear how the atmospheric OH sink will respond to these additional emissions.
Given the many uncertainties in the global CH, budget and the potential major feedbacks, continued and
expanded monitoring of the evolution of atmospheric CH, is required to provide high-quality top-down
constraints on the source-sink imbalance. However, to substantially advance our process understanding of
the global CH,4 cycle and predictions of future CH, levels, it is increasingly important to reconcile top-down
and bottom-up budgets, particularly as bottom-up observations themselves require careful multidisciplinary
efforts incorporating geochemical, physical, and biological observations.

This can be done by comparing bottom-up estimates with top-down budgets on a study by study basis (e.g.,
Pangala et al., 2017). Such comparisons would be made easier by a study intercomparison project and a
regularly updated and openly available database of both global and regional top-down and bottom-up
CH,4 budgets to serve as a reference point for researchers putting together bottom-up CH4 emission esti-
mates (e.g., Saunois, Bousquet, et al., 2016). However, top-down studies are necessarily large scale and global
in scope, while bottom-up studies tend to be process and location specific, making direct comparisons
between top-down bottom-up studies challenging. Intercomparison projects of the observational networks
(see section 1.3) on which top-down studies are based would help improve top-down estimates for smaller
regions, as would expanding atmospheric observation networks; the latter would also help reduce uncertain-
ties in top-down estimates, in general. From a bottom-up perspective, better constraint of CH, production,
consumption, and emission variability across multiple scales, from microbial to regional, would help improve
understanding of how this variability contributes to the larger-scale CH4 budgets. This includes assessing the
response of both CH4 production and consumption to environmental shifts under predicted climate change
and how this varies across scales. Further, there is to some degree a focus on discovering new CH, sources in
the literature, but future research should also consider new CH, sinks (e.g., Brankovits et al., 2017; Waring
et al,, 2017) as this may improve the sink terms in current global CH, budgets. These efforts require not only
increased long-term monitoring of sources and sinks of CH4 but also in situ manipulation experiments aimed
at providing insight into the relative sensitivity of production versus consumption processes in the source-to-
atmosphere pathways. This remains the key uncertainty in bottom-up budgets.

Glossary

Bacteria and Archaea Single-celled microorganisms (microbes) that thrive across diverse environments
and form the basis of many biogeochemical reactions on Earth. Archaea are key CH4 producers.

Bottom-up Referring to CH4 budgets and inventories estimated from observations and modeling at the
Earth surface, including process-specific measurements and models.

Earth System Models Models that integrate biological, physical, and chemical interactions between the
atmosphere, ocean, land, ice, and biosphere to predict global and regional responses to future climate
change scenarios.

Ebullition The release of gas bubbles that have been building up in soil or sediment.

Electron Acceptors A compound that can incorporate the electrons released during oxidation (in this case
the oxidation of CH,). Alternative electron acceptors in the context of CH, oxidation refer to electron accep-
tors other than O,.

Eutrophic Nutrient conditions that support high levels of biological productivity.

Freshwater Systems In this review, we refer to inland waters (lakes, rivers, and streams), as freshwater sys-
tems following Saunois, Bousquet, et al. (2016), and to distinguish among marine, estuarine, and freshwater
systems. In general, the terms inland waters and freshwater systems are interchangeable, except that inland
waters can also include saline (salty) lakes and rivers, whereas freshwater systems by definition cannot.

Global Warming Potential The climate impact of different forcing agents can be compared via this
metric, which compares the radiative forcing, over a certain time horizon, caused by the emission of 1 kg
of a certain forcing agent, to the forcing caused by the emission of 1 kg of CO,.
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Macrophytes Emerged, submerged or floating-leaf aquatic plants that are large enough to be seen by the
naked eye.

Mesotrophic Nutrient conditions that support intermediate levels of biological productivity.

Metabolites Substances necessary for metabolism, performing roles such as promoting or inhibiting cer-
tain biological processes.

Methanogenesis (Carried out by methanogens) The production of chy, which is possible via several path-
ways: Hydrogenotrophic pathway—via the metabolism of hydrogen; Methylotrophic pathway—uvia the
metabolism of single- or multi-carbon compounds; Acetoclastic—utilizing acetic acid.

Methanotrophy (Carried out by methantrophs) The conversion of ch, to CO,, which can occur in the
presence of several different electron acceptors (Figure 1).

Milankovitch Cycles Repetitive orbital variations of the earth which influence the amount of solar radia-
tion reaching the planet. The three relevant planetary movements are eccentricity (the shape of earth’s orbit
around the Sun, resulting in a ~100,000 year cycle), obliquity (the varying angle between Earth’s rotational
axis and its orbital rotation plane, ~41,000 year cycle), and precession (variation of the orientation of
Earth's rotational axis, ~26,000 year cycle).

Monomers and Oligomers A molecule that may join with other molecules to form oligomers (consisting
of a few units) or polymers (unlimited units).

Oligotrophic Nutrient-poor conditions that support limited levels of biological productivity.

Phytoplankton Aquatic micro-organisms that obtain their energy via photosynthesis.

Positive Climate Feedback A mechanism of climate warming that is positively influenced by climate itself.
as warming increases, so too will the magnitude of the mechanism, forming a positive feedback loop.

RCP8.5 Representative Concentration Pathways (RCPs) are atmospheric greenhouse gas concentration
trajectories used by the Intergovernmental Panel on Climate Change to describe potential ranges of radiative
forcing based on possible greenhouse gas emission scenarios. RCP8.5 is the highest pathway leading to a
radiative forcing of +8.5 W m™2 by 2100 relative to pre-industrial times.

Shrubification The expansion of landscape areas covered in shrubs.

Sphagnum A genus of mosses found in wetlands that play an important role in the control of acidification
and water retention and contribute significantly to terrestrial organic carbon storage in wetland ecosystems.

Thermophile (Thermophilic) An organism which can flourish in high-temperature environments, for
example, deep subsurface and volcanic zones.

Thermokarst Features caused by the rapid destabilization of permafrost soils via ice melting that results in
slumping, subsidence, erosion, and/or general surface collapse.

Top-Down

Referring to CH,4 budgets and inventories estimated from atmospheric observations.

Vascular Plants Plants that include xylem for the conduction of water and minerals through the plant and
phloem for the conduction of photosynthesis products.

Yedoma Ice-rich and organic carbon-rich silty sediments deposited in the late Pleistocene in areas that
were not glaciated during this period, found predominantly in North Siberia, and also Alaska and
Northwestern Canada.
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