32 research outputs found

    Stereodifferentiation in the formation and decay of the encounter complex in bimolecular electron transfer with photoactivated acceptors

    Get PDF
    Experimental evidence has been obtained for the involvement of encounter complexes between both enantiomers of a π,π* triplet excited ketone and a chiral phenol or indole. Determination of the pre-equilibrium constants (KEC) and the intrinsic decay rate constants (kd) indicates a significant stereodifferentiation in both steps of the quenching process.Perez Prieto, Julia, [email protected] ; Galian, Raquel Eugenia, [email protected] ; Morant Miñana, Maria Carmen, [email protected]

    Governing the emissive properties of 4-aminobiphenyl-2-pyrimidine push–pull systems via the restricted torsion of N,N-disubstituted amino groups

    Get PDF
    Donor–acceptor-substituted biphenyl derivatives are particularly interesting model compounds, which exhibit intramolecular charge transfer because of the extent of charge transfer between both substituents. The connection of a 4-[1,1′-biphenyl]-4-yl-2-pyrimidinyl) moiety to differently disubstituted amino groups at the biphenyl terminal can offer push–pull compounds with distinctive photophysical properties. Herein, we report a comprehensive study of the influence of the torsion angle of the disubstituted amino group on the emissive properties of two pull–push systems: 4-[4-(4-N,N-dimethylaminophenyl)phenyl]-2,6-diphenylpyrimidine (D1) and 4-[4-(4-N,N-diphenylaminophenyl)phenyl]-2,6-diphenylpyrimidine (D2). The torsion angle of the disubstituted amino group, either N,N-dimethyl-amine or N,N-diphenyl-amine, at the biphenyl end governs their emissive properties. A drastic fluorescence quenching occurs in D1 as the solvent polarity increases, whereas D2 maintains its emission independently of the solvent polarity. Theoretical calculations on D1 support the presence of a twisted geometry for the lowest energy, charge-transfer excited state (S1,90), which corresponds to the minimum energy structure in polar solvents and presents a small energy barrier to move from the excited to the ground state, thereby favoring the non-radiative pathway and reducing the fluorescence efficiency. In contrast, this twisted structure is absent in D2 due to the steric hindrance of the phenyl groups attached to the amine group, making the non-radiative decay less favorable. Our findings provide insights into the crucial role of the substituent in the donor moiety of donor–acceptor systems on both the singlet excited state and the intramolecular charge-transfer process

    Triplet exciplexes as energy transfer photosensitisers

    Get PDF
    Experimental evidence is provided for the occurrence of triplet–triplet energy transfer from benzoylthiophene–indole exciplexes to naphthalenes with a remarkable stereodifferentiation; chiral recognition is also observed in the decay of the generated naphthalene triplets.Perez Prieto, Julia, [email protected] ; Galian, Raquel Eugenia, [email protected] ; Morant Miñana, Maria Carmen, [email protected]

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Present and Perspectives of Photoactive Porous Composites Based on Semiconductor Nanocrystals and Metal-Organic Frameworks

    No full text
    This review focuses on the recent developments in synthesis, properties, and applications of a relatively new family of photoactive porous composites, integrated by metal halide perovskite (MHP) nanocrystals and metal-organic frameworks (MOFs). The synergy between the two systems has led to materials (MHP@MOF composites) with new functionalities along with improved properties and phase stability, thus broadening their applications in multiple areas of research such as sensing, light-harvesting solar cells, light-emitting device technology, encryption, and photocatalysis. The state of the art, recent progress, and most promising routes for future research on these photoactive porous composites are presented in the end

    Recent Progress in Lanthanide-Doped Inorganic Perovskite Nanocrystals and Nanoheterostructures: A Future Vision of Bioimaging

    No full text
    All-inorganic lead halide perovskite nanocrystals have great potential in optoelectronics and photovoltaics. However, their biological applications have not been explored much owing to their poor stability and shallow penetration depth of ultraviolet (UV) excitation light into tissues. Interestingly, the combination of all-inorganic halide perovskite nanocrystals (IHP NCs) with nanoparticles consisting of lanthanide-doped matrix (Ln NPs, such as NaYF4:Yb,Er NPs) is stable, near-infrared (NIR) excitable and emission tuneable (up-shifting emission), all of them desirable properties for biological applications. In addition, luminescence in inorganic perovskite nanomaterials has recently been sensitized via lanthanide doping. In this review, we discuss the progress of various Ln-doped all-inorganic halide perovskites (LnIHP). The unique properties of nanoheterostructures based on the interaction between IHP NCs and Ln NPs as well as those of LnIHP NCs are also detailed. Moreover, a systematic discussion of basic principles and mechanisms as well as of the recent advancements in bio-imaging based on these materials are presented. Finally, the challenges and future perspectives of bio-imaging based on NIR-triggered sensitized luminescence of IHP NCs are discussed

    One-pot synthesis of stable CsPbBr3@CsPb2Br5 core-shell heteronanocrystals with controlled permeability to halide ions

    No full text
    A simple one-pot synthetic strategy based on the hot injection methodology was adapted to prepare (photo)stable and green emissive colloidal CsPbBr3@CsPb2Br5 core@shell heteronanocrystals (HNCs). The photoactive core, specifically CsPbBr3 ternary metal halide nanocrystals, was homogeneously covered with an ultrathin CsPb2Br5 shell (ca. 2 nm), which confers them with long-term stability and a higher photoluminescence quantum yield. Astonishingly, this heterostructure enabled controlled halide exchange to yield unprecedented CsPbCl3@CsPb2Cl5 and CsPbI3@CsPb2I5 HNCs.We thank the Spanish Ministry of Science and Innovation (MICINN), projects PID2020-115710GB-I00, Agencia Estatal de Investigación-AEI and MICIU Unit of Excellence “Maria de Maeztu” CEX2019-000919-M, as well as the Generalitat Valenciana projects PROMETEO/2019/80, IDIFEDER/2018/064 and IDIFEDER/2021/064, and IDIFEDER/2021/064, all of which partially cofinanced this work with FEDER funds. I.R.-P. and A.C. acknowledge support from the Spanish Ministry of Science, Innovation, and Universities (FPU17/05564, CIGRIS/2021/094). R.A. acknowledges financial support from the Spanish Ministry of Science and Innovation MCIN and the Spanish Research Agency AEI (PID2019-104739GB-100/AEI/10.13039/501100011033), Gobierno de Aragon (DGA, E13-20R), and from the European Union H2020 programs “ESTEEM3” (grant agreement no 823717).With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2019-000919-M).Peer reviewe

    Pyrene-Functionalized Nanoparticles: Two Independent Sensors, the Excimer and the Monomer

    No full text
    The high surface-to-volume ratio of nanoparticles has been used to obtain a high local concentration of pyrene units on their periphery, making the formation of both pyrene emissive species possible using amazingly small pyrene concentrations. The sensing properties of model pyrene-functionalized nanoparticles was investigated by using different nitroaromatic compounds [<i>m</i>-nitroaniline and <i>p</i>-nitroaniline] and nitrobenzenes [nitrobenzene, <i>p</i>-nitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene]. The hybrid system acts as a dual-fluorescence sensor, in which the decrease of the pyrene emission, induced by the quencher, is hardly reflected in the pyrene excimer emission. The encapsulation capacity of the NPs also plays a key role in their sensitivity to the analyte
    corecore