137 research outputs found

    The QTL Mapping of the important breeding traits in winter triticale (×Triticosecale Wittm.)

    Get PDF
    The increasing economic importance of triticale (×Triticosecale Wittm.) makes this synthetic hybrid cereal an interesting object of genetic studies. Genomic regions (QTL) of morphological winter triticale traits were determined using the mapping population of 89 doubled haploids lines (DHs) developed from F1 hybrid of cv. ‘Hewo’ and cv. ‘Magnat’ accompanied with the genetic map consisting of 20 linkage groups assigned to the A (7), B (7), and R (6) genomes (total of 3539 DArT, SNP-DArT and SSR markers, length of 4997.4 cM). Five independent experiments were performed in the field and greenhouse controlled conditions. A total of 12 major QTLs located on 2B, 5A, 5R, and 6B chromosomes connected to the stem length, the plant height, the spike length, the number of the productive spikelets per spike, the number of grains per spike, and the thousand kernel weight were identified by a composite interval mapping (CIM)

    Transcriptional responses of winter barley to cold indicate nucleosome remodelling as a specific feature of crown tissues

    Get PDF
    We report a series of microarray-based comparisons of gene expression in the leaf and crown of the winter barley cultivar Luxor, following the exposure of young plants to various periods of low (above and below zero) temperatures. A transcriptomic analysis identified genes which were either expressed in both the leaf and crown, or specifically in one or the other. Among the former were genes responsible for calcium and abscisic acid signalling, polyamine synthesis, late embryogenesis abundant proteins and dehydrins. In the crown, the key organ for cereal overwintering, cold treatment induced transient changes in the transcription of nucleosome assembly genes, and especially H2A and HTA11, which have been implicated in cold sensing in Arabidopsis thaliana. In the leaf, various heat-shock proteins were induced. Differences in expression pattern between the crown and leaf were frequent for genes involved in certain pathways responsible for osmolyte production (sucrose and starch, raffinose, Îł-aminobutyric acid metabolism), sugar signalling (trehalose metabolism) and secondary metabolism (lignin synthesis). The action of proteins with antifreeze activity, which were markedly induced during hardening, was demonstrated by a depression in the ice nucleation temperature

    Test beam performance measurements for the Phase I upgrade of the CMS pixel detector

    Get PDF
    A new pixel detector for the CMS experiment was built in order to cope with the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking with a reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and allows operation at low comparator thresholds. In this paper, comprehensive test beam studies are presented, which have been conducted to verify the design and to quantify the performance of the new detector assemblies in terms of tracking efficiency and spatial resolution. Under optimal conditions, the tracking efficiency is (99.95 ± 0.05) %, while the intrinsic spatial resolutions are (4.80 ± 0.25) Όm and (7.99 ± 0.21) Όm along the 100 Όm and 150 Όm pixel pitch, respectively. The findings are compared to a detailed Monte Carlo simulation of the pixel detector and good agreement is found.Peer reviewe

    Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20−-300 GeV/c

    Full text link
    The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing medium and silicon sensors as an active medium in the regions of high radiation exposure, and scintillator tiles directly readout by silicon photomultipliers in the remaining regions. As part of the development of the detector and its readout electronic components, a section of a silicon-based HGCAL prototype detector along with a section of the CALICE AHCAL prototype was exposed to muons, electrons and charged pions in beam test experiments at the H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology as foreseen for the HGCAL but with much finer longitudinal segmentation. The performance of the calorimeters in terms of energy response and resolution, longitudinal and transverse shower profiles is studied using negatively charged pions, and is compared to GEANT4 predictions. This is the first report summarizing results of hadronic showers measured by the HGCAL prototype using beam test data.Comment: To be submitted to JINS

    Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20-300 GeV positrons

    Full text link
    The Compact Muon Solenoid Collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glued between an electronics circuit board and a metal baseplate. The sensor pads of approximately 1 cm2^2 are wire-bonded to the circuit board and are readout by custom integrated circuits. The prototype was extensively tested with beams at CERN's Super Proton Synchrotron in 2018. Based on the data collected with beams of positrons, with energies ranging from 20 to 300 GeV, measurements of the energy resolution and linearity, the position and angular resolutions, and the shower shapes are presented and compared to a detailed Geant4 simulation

    The CMS Phase-1 pixel detector upgrade

    Get PDF
    The CMS detector at the CERN LHC features a silicon pixel detector as its innermost subdetector. The original CMS pixel detector has been replaced with an upgraded pixel system (CMS Phase-1 pixel detector) in the extended year-end technical stop of the LHC in 2016/2017. The upgraded CMS pixel detector is designed to cope with the higher instantaneous luminosities that have been achieved by the LHC after the upgrades to the accelerator during the first long shutdown in 2013–2014. Compared to the original pixel detector, the upgraded detector has a better tracking performance and lower mass with four barrel layers and three endcap disks on each side to provide hit coverage up to an absolute value of pseudorapidity of 2.5. This paper describes the design and construction of the CMS Phase-1 pixel detector as well as its performance from commissioning to early operation in collision data-taking.Peer reviewe

    Mechanical, pH and Thermal Stability of Mesoporous Hydroxyapatite

    Get PDF
    The stability of mesoporous hydroxyapatite (HAP) powder was studied following treatments of ultrasound, pH and heating. HAP was found to be mechanically stable up to (and including) 1 h continuous ultrasonic treatment in water. The HAP structure was also stable to pH, evidenced by practically identical XRD and FTIR spectra over the pH range 2–12. The surface area increased progressively with increasing acidity, reaching a maximum of 121.9 m 2 g −1 at pH 2, while alkaline conditions decreased the surface area to a minimum of 55.4 m 2 g −1 at pH 12. Heating in air had a significant influence on the structural and morphological properties of HAP, which underwent dehydroxylation to form oxyhydroxyapatite (OHAP) at temperatures ≄ 650 °C, and ÎČ-tricalcium phosphate (ÎČ-TCP) ≄750 °C. The surface area decreased at elevated temperatures due to agglomeration of HAP crystals by sintering, which was associated with an increased particle size
    • 

    corecore