11 research outputs found
Differential effects of the novel neurosteroid hypnotic (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile on electroencephalogram activity in male and female rats
BACKGROUND: We recently showed that a neurosteroid analogue, (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile (3β-OH), induced hypnosis in rats. The aim of the present study was to evaluate the hypnotic and anaesthetic potential of 3β-OH further using electroencephalography.
METHODS: We used behavioural assessment and cortical electroencephalogram (EEG) spectral power analysis to examine hypnotic and anaesthetic effects of 3β-OH (30 and 60 mg kg
RESULTS: We found dose-dependent sex differences in 3β-OH-induced hypnosis and EEG changes. Both male and female rats responded similarly to i.p. 3β-OH 30 mg kg
CONCLUSIONS: Based on its behavioural effects and EEG signature, 3β-OH is a potent hypnotic in rats, with female rats being more sensitive than male rats
The T-type calcium channel isoform Ca v 3.1 is a target for the hypnotic effect of the anaesthetic neurosteroid (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile
BACKGROUND: The mechanisms underlying the role of T-type calcium channels (T-channels) in thalamocortical excitability and oscillations in vivo during neurosteroid-induced hypnosis are largely unknown.
METHODS: We used patch-clamp electrophysiological recordings from acute brain slices ex vivo, recordings of local field potentials (LFPs) from the central medial thalamic nucleus in vivo, and wild-type (WT) and Ca
RESULTS: Patch-clamp recordings showed that 3β-OH inhibited isolated T-currents but had no effect on phasic or tonic γ-aminobutyric acid A currents. Also in acute brain slices, 3β-OH inhibited the spike firing mode more profoundly in WT than in Ca
CONCLUSIONS: The C
Brain Distribution and Metabolism of Flupirtine, a Nonopioid Analgesic Drug with Antiseizure Effects, in Neonatal Rats
Flupirtine, a nonopioid analgesic drug, is effective in treating neonatal seizures. However, its brain delivery and pharmacokinetics are unknown in neonatal mammals. The purpose of this study was to determine the pharmacokinetics of flupirtine and the formation of its active metabolite D-13223 in various tissues such as brain in neonate animals. On postnatal day 7, rat pups received 25 mg/kg of flupirtine intraperitoneally. Liver; heart; kidney; lung; spleen; retina; serum; and brain regions hippocampus, cortex, and the remaining brain (devoid of cerebellum) were harvested up to 24-h postdosing. An LC-MS/MS assay was developed to quantify flupirtine and D-13223. Flupirtine was delivered to all tissues assessed, with the highest area under the concentration vs. time curve (AUC0⁻24h) in liver (488 µg·h/g tissue) and the lowest in spleen (82 µg·h/g tissue). Flupirtine reached the brain, including the hippocampus and cortex, within 1 h of dosing and persisted at 24 h. Flupirtine AUC in various brain regions was approximately 195 µg·h/g tissue. The half-life of flupirtine in various tissues ranged from 3.1 to 5.2 h. D-13223 was formed in vivo and detected in all tissues assessed, with the concentrations being the highest in the liver. Incubation of isolated neonatal rat liver, heart, kidney, lung, spleen, whole eye, serum, or whole brain with flupirtine for 3 h at 37 °C formed D-13223 in all tissues, except serum. D-13223 formation was the highest in isolated liver tissue. Tissue partition coefficients based on isolated tissue uptake correlated well with in vivo tissue:serum drug exposure ratios. Thus, flupirtine reaches the target brain tissues from the systemic route in neonatal rats, and brain tissue forms the active metabolite D-13223
Recommended from our members
Effect of spontaneous seizures on GABAA receptor α4 subunit expression in an animal model of temporal lobe epilepsy.
ObjectiveTemporal lobe epilepsy (TLE) is frequently medically intractable and often progressive. Compromised inhibitory neurotransmission due to altered γ-aminobutyric acid (GABA)A receptor α4 subunit (GABAA Rα4) expression has been emphasized as a potential contributor to the initial development of epilepsy following a brain insult (primary epileptogenesis), but the regulation of GABAA Rα4 during chronic epilepsy, specifically, how expression is altered following spontaneous seizures, is less well understood.MethodsContinuous video-electroencephalography (EEG) recordings from rats with pilocarpine-induced TLE were used to capture epileptic animals within 3 h of a spontaneous seizure (SS), or >24 h after the last SS, to determine whether recent occurrence of a seizure was associated with altered levels of GABAA Rα4 expression. We further evaluated whether this GABAA Rα4 plasticity is regulated by signaling mechanisms active in primary epileptogenesis, specifically, increases in brain-derived neurotrophic factor (BDNF) and early growth response factor 3 (Egr3).ResultsElevated levels of GABAA Rα4 messenger RNA (mRNA) and protein were observed following spontaneous seizures, and were associated with higher levels of BDNF and Egr3 mRNA.SignificanceThese data suggest that spontaneous, recurrent seizures that define chronic epilepsy may influence changes in GABAA Rα4 expression, and that signaling pathways known to regulate GABAA Rα4 expression after status epilepticus may also be activated after spontaneous seizures in chronically epileptic animals