27 research outputs found

    Vertical foraging shifts in Hawaiian forest birds in response to invasive rat removal

    Get PDF
    Worldwide, native species increasingly contend with the interacting stressors of habitat fragmentation and invasive species, yet their combined effects have rarely been examined. Direct negative effects of invasive omnivores are well documented, but the indirect effects of resource competition or those caused by predator avoidance are unknown. Here we isolated and examined the independent and interactive effects of invasive omnivorous Black rats (Rattus rattus) and forest fragment size on the interactions between avian predators and their arthropod prey. Our study examines whether invasive omnivores and ecosystem fragment size impact: 1) the vertical distribution of arthropod species composition and abundance, and 2) the vertical profile of foraging behaviors of five native and two non-native bird species found in our study system. We predicted that the reduced edge effects and greater structural complexity and canopy height of larger fragments would limit the total and proportional habitat space frequented by rats and thus limit their impact on both arthropod biomass and birds’ foraging behavior. We experimentally removed invasive omnivorous Black rats across a 100-fold (0.1 to 12 ha) size gradient of forest fragments on Hawai‘i Island, and paired foraging observations of forest passerines with arthropod sampling in the 16 rat-removed and 18 control fragments. Rat removal was associated with shifts in the vertical distribution of arthropod biomass, irrespective of fragment size. Bird foraging behavior mirrored this shift, and the impact of rat removal was greater for birds that primarily eat fruit and insects compared with those that consume nectar. Evidence from this model study system indicates that invasive rats indirectly alter the feeding behavior of native birds, and consequently impact multiple trophic levels. This study suggests that native species can modify their foraging behavior in response to invasive species removal and presumably arrival through behavioral plasticity

    Successful management of invasive rats across a fragmented landscape

    Get PDF
    Summary Introduced mammalian predators are responsible for the decline and extinction of many native species, with rats (genus Rattus) being among the most widespread and damaging invaders worldwide. In a naturally fragmented landscape, we demonstrate the multi-year effectiveness of snap traps in the removal of Rattus rattus and Rattus exulans from lava-surrounded forest fragments ranging in size from 10 ha. Relative to other studies, we observed low levels of fragment recolonization. Larger rats were the first to be trapped, with the average size of trapped rats decreasing over time. Rat removal led to distinct shifts in the foraging height and location of mongooses and mice, emphasizing the need to focus control efforts on multiple invasive species at once. Furthermore, because of a specially designed trap casing, we observed low non-target capture rates, suggesting that on Hawai\u27i and similar islands lacking native rodents the risk of killing non-target species in snap traps may be lower than the application of rodenticides, which have the potential to contaminate food webs. These efforts demonstrate that targeted snap-trapping is an effective removal method for invasive rats in fragmented habitats and that, where used, monitoring of recolonization should be included as part of a comprehensive biodiversity management strategy

    Brief intervention to reduce risky drinking in pregnancy: study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Risky drinking in pregnancy by UK women is likely to result in many alcohol-exposed pregnancies. Studies from the USA suggest that brief intervention has promise for alcohol risk reduction in antenatal care. However, further research is needed to establish whether this evidence from the USA is applicable to the UK. This pilot study aims to investigate whether pregnant women can be recruited and retained in a randomized controlled trial of brief intervention aimed at reducing risky drinking in women receiving antenatal care.</p> <p>Methods</p> <p>The trial will rehearse the parallel-group, non-blinded design and procedures of a subsequent definitive trial. Over 8 months, women aged 18 years and over (target number 2,742) attending their booking appointment with a community midwife (n = 31) in north-east England will be screened for alcohol consumption using the consumption questions of the Alcohol Use Disorders Identification Test (AUDIT-C). Those screening positive, without a history of substance use or alcohol dependence, with no pregnancy complication, and able to give informed consent, will be invited to participate in the trial (target number 120). Midwives will be randomized in a 1:1 ratio to deliver either treatment as usual (control) or structured brief advice and referral for a 20-minute motivational interviewing session with an alcohol health worker (intervention). As well as demographic and health information, baseline measures will include two 7-day time line follow-back questionnaires and the EuroQoL EQ-5D-3 L questionnaire. Measures will be repeated in telephone follow-ups in the third trimester and at 6 months post-partum, when a questionnaire on use of National Health Service and social care resources will also be completed. Information on pregnancy outcomes and stillbirths will be accessed from central health service records before the follow-ups. Primary outcomes will be rates of eligibility, recruitment, intervention delivery, and retention in the study population, to inform power calculations for a definitive trial. The health-economics component will establish how cost-effectiveness will be assessed, and examine which data on health service resource use should be collected in a main trial. Participants’ views on instruments and procedures will be sought to confirm their acceptability.</p> <p>Discussion</p> <p>The study will produce a full trial protocol with robust sample-size calculations to extend evidence on effectiveness of screening and brief intervention.</p> <p>Trial Registration</p> <p>Current Controlled Trials ISRCTN43218782</p

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Data from: Introduced ants reduce interaction diversity in a multi-species, ant-aphid mutualism

    No full text
    Mutualisms contribute in fundamental ways to the origin, maintenance and organization of biological diversity. Introduced species commonly participate in mutualisms, but how this phenomenon affects patterns of interactions among native mutualists remains incompletely understood. Here we examine how networks of interactions among aphid-tending ants, ant-tended aphids, and aphid-attacking parasitoid wasps differ between 12 spatially paired riparian study sites with and without the introduced Argentine ant Linepithema humile in southern California. To resolve challenges in species identification, we used DNA barcoding to identify aphids and screen for parasitoid wasps (developing inside their aphid hosts) from 170 aphid aggregations sampled on arroyo willow Salix lasiolepis. Compared to uninvaded sites, invaded sites supported significantly fewer species of aphid-tending ants and ant-tended aphids. At invaded sites, for example, we found only two species of ant-tended aphids, which were exclusively tended by L. humile, whereas at uninvaded sites we found 20 unique ant–aphid interactions involving eight species of ant-tended aphids and nine species of aphid-tending ants. Ant–aphid linkage density was thus significantly lower at invaded sites compared to uninvaded sites. We detected aphid parasitoids in 14% (28/198) of all aphid aggregations. Although the level of parasitism did not differ between invaded and uninvaded sites, more species of wasps were detected within uninvaded sites compared to invaded sites. These results provide a striking example of how the assimilation of introduced species into multi-species mutualisms can reduce interaction diversity with potential consequences for species persistence

    Foraging connections: Patterns of prey use linked to invasive predator diel movement.

    Get PDF
    Invasive predators can profoundly impact native communities, especially in insular ecosystems where functionally equivalent predators were evolutionarily absent. Beyond direct consumption, predators can affect communities indirectly by creating or altering food web linkages among existing species. Where invasive predators consume prey from multiple distinct resource channels, novel links may couple the dynamics of disjunct modules and create indirect interactions between them. Our study focuses on invasive populations of Eleutherodactylus coqui (Anura: Leptodactylidae) on Hawaii Island. Coqui actively forage in the understory and lower canopy at night but return to the forest floor and belowground retreats by day. Recent dietary studies using gut contents and naturally occurring stable isotopes indicate higher than expected consumption of litter arthropods, which in these Hawaiian forests are primarily non-native species. We used laboratory studies to observe diurnal and nocturnal foraging behavior, and experimental field additions of C4 vegetation as a litter tracer to distinguish epigaeic sources from food web pools in the C3 canopy. Lab trials revealed that prey consumption during diurnal foraging was half that consumed during nocturnal foraging. Analysis of δ13C isotopes showed incorporation of C4 carbon into litter arthropods within one month, and Bayesian mixing models estimated that 15-25% of the carbon in coqui tissue was derived from litter sources. These results support recent findings that E. coqui are not quiescent diurnally but instead actively forage. Such activity by a mobile invasive predator may introduce a novel linkage that integrates detrital and foliar resource pools, potentially distributing influences of invasive litter arthropods through the broader system to amplify impacts on native species

    Data from: Movements of four native Hawaiian birds across a naturally fragmented landscape

    No full text
    Animals often increase their fitness by moving across space in response to temporal variation in habitat quality and resource availability, and as a result of intra and inter-specific interactions. The long-term persistence of populations and even whole species depends on the collective patterns of individual movements, yet animal movements have been poorly studied at the landscape level. We quantified movement behavior within four native species of Hawaiian forest birds in a complex lava-fragmented landscape: Hawai‛i ‘Amakihi (Chlorodrepanis virens), ‘Oma‘o (Myadestes obscurus), ‘Apapane (Himatione sanguinea), and ‘I‘iwi (Drepanis coccinea). We evaluated the relative importance of six potential intrinsic and extrinsic drivers of movement behavior and patch fidelity: 1) forest fragment size, 2) the presence or absence of invasive rats (Rattus sp.), 3) season, 4) species, 5) age, and 6) sex. The study was conducted across a landscape of 34 forest fragments varying in size from 0.07 to 12.37 ha, of which 16 had rats removed using a treatment-control design. We found the largest movements in the nectivorous ‘Apapane and ‘I‘iwi, intermediate levels in the generalist Hawai‛i ‘Amakihi, and shortest average movement for the ‘Oma‘o, a frugivore. We found evidence for larger patch sizes increasing patch fidelity only in the ‘Oma‘o, and an effect of rat-removal increasing patch fidelity of Hawai‛i ‘Amakihi only after two years of rat-removal. Greater movement during the non-breeding season was observed in all species, and season was an important factor in explaining higher patch fidelity in the breeding season for ‘Apapane and ‘I‘iwi. Sex was important in explaining patch fidelity in ‘Oma‘o only, with males showing higher patch fidelity. Our results provide new insights into how these native Hawaiian species will respond to a changing environment, including habitat fragmentation and changing distribution of threats from climate change

    Knowlton et al. JAB DATA

    No full text
    All birds banded, resights and recaptures, including when and where and distances moved

    Vertical foraging shifts in Hawaiian forest birds in response to invasive rat removal.

    Get PDF
    Worldwide, native species increasingly contend with the interacting stressors of habitat fragmentation and invasive species, yet their combined effects have rarely been examined. Direct negative effects of invasive omnivores are well documented, but the indirect effects of resource competition or those caused by predator avoidance are unknown. Here we isolated and examined the independent and interactive effects of invasive omnivorous Black rats (Rattus rattus) and forest fragment size on the interactions between avian predators and their arthropod prey. Our study examines whether invasive omnivores and ecosystem fragment size impact: 1) the vertical distribution of arthropod species composition and abundance, and 2) the vertical profile of foraging behaviors of five native and two non-native bird species found in our study system. We predicted that the reduced edge effects and greater structural complexity and canopy height of larger fragments would limit the total and proportional habitat space frequented by rats and thus limit their impact on both arthropod biomass and birds' foraging behavior. We experimentally removed invasive omnivorous Black rats across a 100-fold (0.1 to 12 ha) size gradient of forest fragments on Hawai'i Island, and paired foraging observations of forest passerines with arthropod sampling in the 16 rat-removed and 18 control fragments. Rat removal was associated with shifts in the vertical distribution of arthropod biomass, irrespective of fragment size. Bird foraging behavior mirrored this shift, and the impact of rat removal was greater for birds that primarily eat fruit and insects compared with those that consume nectar. Evidence from this model study system indicates that invasive rats indirectly alter the feeding behavior of native birds, and consequently impact multiple trophic levels. This study suggests that native species can modify their foraging behavior in response to invasive species removal and presumably arrival through behavioral plasticity
    corecore