79 research outputs found

    Evaluation of a training program for general ultrasound screening for developmental dysplasia of the hip in preventive child health care

    Get PDF
    Background: A research study in the Netherlands showed that general ultrasound (US) screening was cost-effective in the detection of developmental dysplasia of the hip (DDH). This study was followed by a pilot implementation study. Part of this pilot implementation study is to investigate whether professionals of the infant health care (IHC) system, with no previous US experience, would be able to perform US of the hip. Objective: This study looks at health care worker ability to classify US images into a modified Graf system. Materials and methods: After theoretical and practical training, seven nurses and physicians of the participating IHC centers reported their findings on sonographic images of 80 children. This was repeated five months later. From the two evaluation moments the intraobserver agreement and the interobserver agreement was determined. Results: The average estimated interobserver Cohen’s kappa for both sessions was for nurses 0.6 and for physicians 0.5. The second evaluation showed a decrease from an average of 4.3% missed cases per screener to 2.3% and an increase of an average of 5% false positives per screener to 9.1%. Conclusion: The inter- and intra-observer agreement is comparable to similar studies in which the participants had a professional background in US examination. The level of agreement of the trainees in the perspective of the screening process was considered sufficient for the pilot implementation project

    Effect of rituximab treatment on T and B cell subsets in lymph node biopsies of patients with rheumatoid arthritis

    Get PDF
    Contains fulltext : 205472.pdf (publisher's version ) (Open Access)OBJECTIVES: The exact underlying mechanism of rituximab treatment in patients with RA is poorly defined and knowledge about the effect of B cell depletion on immune cells in secondary lymphoid organs is lacking. We analysed lymphoid tissue responses to rituximab in RA patients. METHODS: Fourteen RA patients received 2 x 1000 mg rituximab intravenously, and lymph node (LN) biopsies were obtained before and 4 weeks after the first infusion. Tissues were examined by flow cytometry, immunohistochemistry and quantitative PCR. LN biopsies from five healthy individuals (HC) served as controls. RESULTS: LN biopsies of RA patients showed increased frequencies of CD21+CD23+IgDhighIgMvariable follicular B cells and CD3+CD25+CD69+ early activated, tissue resident T cells when compared with HCs. After treatment, there was incomplete depletion of LN B cells. There was a significant decrease in CD27-IgD+ naive B cells, and CD27+IgD+ unswitched memory B cells including the CD27+IgD+IgM+ subset and follicular B cells. Strikingly, CD27+IgD- switched memory B cells persisted in LN biopsies after rituximab treatment. In the T cell compartment, a significant decrease was observed in the frequency of early activated, tissue resident T cells after rituximab treatment, but late activated T cells persisted. B cell proliferation inducing cytokine IL-21 was higher expressed in LN biopsies of RA patients compared with HC and expression was not affected by rituximab treatment. CONCLUSION: Rituximab does not cure RA, possibly due to persistence of switched memory B cells in lymphoid tissues suggesting that factors promoting B cell survival and differentiation need to be additionally targeted

    Heterogeneous expression pattern of interleukin 17A (IL-17A), IL-17F and their receptors in synovium of rheumatoid arthritis, psoriatic arthritis and osteoarthritis: possible explanation for nonresponse to anti-IL-17 therapy?

    Get PDF
    Accumulating evidence suggests an important role for interleukin 17 (IL-17) in the pathogenesis of several inflammatory diseases, including rheumatoid arthritis (RA) and psoriatic arthritis (PsA). Accordingly, clinical trials aimed at blocking IL-17 have been initiated, but clinical results between patients and across different diseases have been highly variable. The objective was to determine the variability in expression of IL-17A, IL-17F and their receptors IL-17RA and IL-17RC in the synovia of patients with arthritis. Synovial biopsies were obtained from patients with RA (n = 11), PsA (n = 15) and inflammatory osteoarthritis (OA, n = 14). For comparison, synovia from noninflamed knee joints (n = 7) obtained from controls were included. Frozen sections were stained for IL-17A, IL-17F, IL-17RA and IL-17RC and evaluated by digital image analysis. We used confocal microscopy to determine which cells in the synovium express IL-17A and IL-17F, double-staining with CD4, CD8, CD15, CD68, CD163, CD31, von Willebrand factor, peripheral lymph node address in, lymphatic vessel endothelial hyaluronan receptor 1, mast cell tryptase and retinoic acid receptor-related orphan receptor γt (RORγt). IL-17A, IL-17F, IL-17RA and IL-17RC were abundantly expressed in synovial tissues of all patient groups. Whereas IL-17RA was present mostly in the synovial sublining, IL-17RC was abundantly expressed in the intimal lining layer. Digital image analysis showed a significant (P  < 0.05) increase of only IL-17A in arthritis patients compared to noninflamed control tissues. The expression of IL-17A, IL-17F and their receptors was similar in the different patient groups, but highly variable between individual patients. CD4+ and CD8+ cells coexpressed IL-17A, and few cells coexpressed IL-17F. IL-17A and IL-17F were not expressed by CD15+ neutrophils. Mast cells were only occasionally positive for IL-17A or IL-17F. Interestingly, IL-17A and IL-17F staining was also observed in macrophages, as well as in blood vessels and lymphatics. This staining probably reflects receptor-bound cytokine staining. Many infiltrated cells were positive for the transcription factor RORγt. Colocalisation between RORγt and IL-17A and IL-17F indicates local IL-17 production. Increased expression of IL-17A is not restricted to synovial tissues of RA and PsA patients; it is also observed in inflammatory OA. The heterogeneous expression levels may explain nonresponse to anti-IL-17 therapy in subsets of patient

    Driving chronicity in rheumatoid arthritis: perpetuating role of myeloid cells

    Get PDF
    Acute inflammation is a complex and tightly regulated homeostatic process that includes leukocyte migration from the vasculature into tissues to eliminate the pathogen/injury, followed by a pro-resolving response promoting tissue repair. However, if inflammation is uncontrolled as in chronic diseases such as Rheumatoid Arthritis (RA) it leads to tissue damage and disability. Synovial tissue inflammation in RA patients is maintained by sustained activation of multiple inflammatory positive-feedback regulatory pathways in a variety of cells including myeloid cells. In this review, we will highlight recent evidence uncovering biological mechanisms contributing to the aberrant activation of myeloid cells that contributes to perpetuation of inflammation in RA, and discuss emerging data on anti-inflammatory mediators contributing to sustained remission that may inform a novel category of therapeutic targets

    A Discrete Event Simulation model to evaluate the treatment pathways of patients with Cataract in the United Kingdom

    Get PDF
    Background The number of people affected by cataract in the United Kingdom (UK) is growing rapidly due to ageing population. As the only way to treat cataract is through surgery, there is a high demand for this type of surgery and figures indicate that it is the most performed type of surgery in the UK. The National Health Service (NHS), which provides free of charge care in the UK, is under huge financial pressure due to budget austerity in the last decade. As the number of people affected by the disease is expected to grow significantly in coming years, the aim of this study is to evaluate whether the introduction of new processes and medical technologies will enable cataract services to cope with the demand within the NHS funding constraints. Methods We developed a Discrete Event Simulation model representing the cataract services pathways at Leicester Royal Infirmary Hospital. The model was inputted with data from national and local sources as well as from a surgery demand forecasting model developed in the study. The model was verified and validated with the participation of the cataract services clinical and management teams. Results Four scenarios involving increased number of surgeries per half-day surgery theatre slot were simulated. Results indicate that the total number of surgeries per year could be increased by 40% at no extra cost. However, the rate of improvement decreases for increased number of surgeries per half-day surgery theatre slot due to a higher number of cancelled surgeries. Productivity is expected to improve as the total number of doctors and nurses hours will increase by 5 and 12% respectively. However, non-human resources such as pre-surgery rooms and post-surgery recovery chairs are under-utilized across all scenarios. Conclusions Using new processes and medical technologies for cataract surgery is a promising way to deal with the expected higher demand especially as this could be achieved with limited impact on costs. Non-human resources capacity need to be evenly levelled across the surgery pathway to improve their utilisation. The performance of cataract services could be improved by better communication with and proactive management of patients.Peer reviewedFinal Published versio

    Implementation by simulation; strategies for ultrasound screening for hip dysplasia in the Netherlands

    Get PDF
    Background: Implementation of medical interventions may vary with organization and available capacity. The influence of this source of variability on the cost-effectiveness can be evaluated by computer simulation following a carefully designed experimental design. We used this approach as part of a national implementation study of ultrasonographic infant screening for developmental dysplasia of the hip (DDH). Methods: First, workflow and performance of the current screening program (physical examination) was analyzed. Then, experimental variables, i.e., relevant entities in the workflow of screening, were defined with varying levels to describe alternative implementation models. To determine the relevant levels literature and interviews among professional stakeholders are used. Finally, cost-effectiveness ratios (inclusive of sensitivity analyses) for the range of implementation scenarios were calculated. Results: The four experimental variables for implementation were: 1) location of the consultation, 2) integrated with regular consultation or not, 3) number of ultrasound machines and 4) discipline of the screener. With respective numbers of levels of 3,2,3,4 in total 72 possible scenarios were identified. In our model experimental variables related to the number of available ultrasound machines and the necessity of an extra consultation influenced the cost-effectiveness most. Conclusions: Better information comes available for choosing optimised implementation strategies where organizational and capacity variables are important using the combination of simulation models and an experimental design. Information to determine the levels of experimental variables can be extracted from the literature or directly from experts

    Harmonization of the intracellular cytokine staining assay

    Get PDF
    Active immunotherapy for cancer is an accepted treatment modality aiming to reinforce the T-cell response to cancer. T-cell reactivity is measured by various assays and used to guide the clinical development of immunotherapeutics. However, data obtained across different institutions may vary substantially making comparative conclusions difficult. The Cancer Immunotherapy Immunoguiding Program organizes proficiency panels to identify key parameters influencing the outcome of commonly used T-cell assays followed by harmonization. Our successes with IFNγ-ELISPOT and peptide HLA multimer analysis have led to the current study on intracellular cytokine staining (ICS). We report the results of three successive panels evaluating this assay. At the beginning, 3 out of 9 participants (33 %) were able to detect >6 out of 8 known virus-specific T-cell responses in peripheral blood of healthy individuals. This increased to 50 % of the laboratories in the second phase. The reported percentages of cytokine-producing T cells by the different laboratories were highly variable with coefficients of variation well over 60 %. Variability could partially be explained by protocol-related differences in background cytokine production leading to sub-optimal signal-to-noise ratios. The large number of protocol variables prohibited identification of prime guidelines to harmonize the assays. In addition, the gating strategy used to identify reactive T cells had a major impact on assay outcome. Subsequent harmonization of the gating strategy considerably reduced the variability within the group of participants. In conclusion, we propose that first basic guidelines should be applied for gating in ICS experiments before harmonizing assay protocol variables

    Impaired lymph node stromal cell function during the earliest phases of rheumatoid arthritis.

    Get PDF
    BACKGROUND: Systemic autoimmunity can be present years before clinical onset of rheumatoid arthritis (RA). Adaptive immunity is initiated in lymphoid tissue where lymph node stromal cells (LNSCs) regulate immune responses through their intimate connection with leucocytes. We postulate that malfunctioning of LNSCs creates a microenvironment in which normal immune responses are not properly controlled, possibly leading to autoimmune disease. In this study we established an experimental model for studying the functional capacities of human LNSCs during RA development. METHODS: Twenty-four patients with RA, 23 individuals positive for autoantibodies but without clinical disease (RA risk group) and 14 seronegative healthy control subjects underwent ultrasound-guided inguinal lymph node (LN) biopsy. Human LNSCs were isolated and expanded in vitro for functional analyses. In analogous co-cultures consisting of LNSCs and peripheral blood mononuclear cells, αCD3/αCD28-induced T-cell proliferation was measured using carboxyfluorescein diacetate succinimidyl ester dilution. RESULTS: Fibroblast-like cells expanded from the LN biopsy comprised of fibroblastic reticular cells (gp38+CD31-) and double-negative (gp38-CD31-) cells. Cultured LNSCs stably expressed characteristic adhesion molecules and cytokines. Basal expression of C-X-C motif chemokine ligand 12 (CXCL12) was lower in LNSCs from RA risk individuals than in those from healthy control subjects. Key LN chemokines C-C motif chemokine ligand (CCL19), CCL21 and CXCL13 were induced in LNSCs upon stimulation with tumour necrosis factor-α and lymphotoxin α1β2, but to a lesser extent in LNSCs from patients with RA. The effect of human LNSCs on T-cell proliferation was ratio-dependent and altered in RA LNSCs. CONCLUSIONS: Overall, we developed an experimental model to facilitate research on the role of LNSCs during the earliest phases of RA. Using this innovative model, we show, for the first time to our knowledge, that the LN stromal environment is changed during the earliest phases of RA, probably contributing to deregulated immune responses early in disease pathogenesis
    corecore