28 research outputs found
All-sky search for periodic gravitational waves in LIGO S4 data
We report on an all-sky search with the LIGO detectors for periodic
gravitational waves in the frequency range 50-1000 Hz and with the frequency's
time derivative in the range -1.0E-8 Hz/s to zero. Data from the fourth LIGO
science run (S4) have been used in this search. Three different semi-coherent
methods of transforming and summing strain power from Short Fourier Transforms
(SFTs) of the calibrated data have been used. The first, known as "StackSlide",
averages normalized power from each SFT. A "weighted Hough" scheme is also
developed and used, and which also allows for a multi-interferometer search.
The third method, known as "PowerFlux", is a variant of the StackSlide method
in which the power is weighted before summing. In both the weighted Hough and
PowerFlux methods, the weights are chosen according to the noise and detector
antenna-pattern to maximize the signal-to-noise ratio. The respective
advantages and disadvantages of these methods are discussed. Observing no
evidence of periodic gravitational radiation, we report upper limits; we
interpret these as limits on this radiation from isolated rotating neutron
stars. The best population-based upper limit with 95% confidence on the
gravitational-wave strain amplitude, found for simulated sources distributed
isotropically across the sky and with isotropically distributed spin-axes, is
4.28E-24 (near 140 Hz). Strict upper limits are also obtained for small patches
on the sky for best-case and worst-case inclinations of the spin axes.Comment: 39 pages, 41 figures An error was found in the computation of the C
parameter defined in equation 44 which led to its overestimate by 2^(1/4).
The correct values for the multi-interferometer, H1 and L1 analyses are 9.2,
9.7, and 9.3, respectively. Figure 32 has been updated accordingly. None of
the upper limits presented in the paper were affecte
A Joint Search for Gravitational Wave Bursts with AURIGA and LIGO
The first simultaneous operation of the AURIGA detector and the LIGO
observatory was an opportunity to explore real data, joint analysis methods
between two very different types of gravitational wave detectors: resonant bars
and interferometers. This paper describes a coincident gravitational wave burst
search, where data from the LIGO interferometers are cross-correlated at the
time of AURIGA candidate events to identify coherent transients. The analysis
pipeline is tuned with two thresholds, on the signal-to-noise ratio of AURIGA
candidate events and on the significance of the cross-correlation test in LIGO.
The false alarm rate is estimated by introducing time shifts between data sets
and the network detection efficiency is measured with simulated signals with
power in the narrower AURIGA band. In the absence of a detection, we discuss
how to set an upper limit on the rate of gravitational waves and to interpret
it according to different source models. Due to the short amount of analyzed
data and to the high rate of non-Gaussian transients in the detectors noise at
the time, the relevance of this study is methodological: this was the first
joint search for gravitational wave bursts among detectors with such different
spectral sensitivity and the first opportunity for the resonant and
interferometric communities to unify languages and techniques in the pursuit of
their common goal.Comment: 18 pages, IOP, 12 EPS figure
Search for gravitational-wave bursts in LIGO data from the fourth science run
The fourth science run of the LIGO and GEO 600 gravitational-wave detectors,
carried out in early 2005, collected data with significantly lower noise than
previous science runs. We report on a search for short-duration
gravitational-wave bursts with arbitrary waveform in the 64-1600 Hz frequency
range appearing in all three LIGO interferometers. Signal consistency tests,
data quality cuts, and auxiliary-channel vetoes are applied to reduce the rate
of spurious triggers. No gravitational-wave signals are detected in 15.5 days
of live observation time; we set a frequentist upper limit of 0.15 per day (at
90% confidence level) on the rate of bursts with large enough amplitudes to be
detected reliably. The amplitude sensitivity of the search, characterized using
Monte Carlo simulations, is several times better than that of previous
searches. We also provide rough estimates of the distances at which
representative supernova and binary black hole merger signals could be detected
with 50% efficiency by this analysis.Comment: Corrected amplitude sensitivities (7% change on average); 30 pages,
submitted to Classical and Quantum Gravit
Search for Gravitational Waves Associated with 39 Gamma-Ray Bursts Using Data from the Second, Third, and Fourth LIGO Runs
We present the results of a search for short-duration gravitational-wave
bursts associated with 39 gamma-ray bursts (GRBs) detected by gamma-ray
satellite experiments during LIGO's S2, S3, and S4 science runs. The search
involves calculating the crosscorrelation between two interferometer data
streams surrounding the GRB trigger time. We search for associated
gravitational radiation from single GRBs, and also apply statistical tests to
search for a gravitational-wave signature associated with the whole sample. For
the sample examined, we find no evidence for the association of gravitational
radiation with GRBs, either on a single-GRB basis or on a statistical basis.
Simulating gravitational-wave bursts with sine-gaussian waveforms, we set upper
limits on the root-sum-square of the gravitational-wave strain amplitude of
such waveforms at the times of the GRB triggers. We also demonstrate how a
sample of several GRBs can be used collectively to set constraints on
population models. The small number of GRBs and the significant change in
sensitivity of the detectors over the three runs, however, limits the
usefulness of a population study for the S2, S3, and S4 runs. Finally, we
discuss prospects for the search sensitivity for the ongoing S5 run, and beyond
for the next generation of detectors.Comment: 24 pages, 10 figures, 14 tables; minor changes to text and Fig. 2;
accepted by Phys. Rev.
All-sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data
We report on an all-sky search with the LIGO detectors for periodic
gravitational waves in the frequency range 50--1100 Hz and with the frequency's
time derivative in the range -5.0E-9 Hz/s to zero. Data from the first eight
months of the fifth LIGO science run (S5) have been used in this search, which
is based on a semi-coherent method (PowerFlux) of summing strain power.
Observing no evidence of periodic gravitational radiation, we report 95%
confidence-level upper limits on radiation emitted by any unknown isolated
rotating neutron stars within the search range. Strain limits below 1.E-24 are
obtained over a 200-Hz band, and the sensitivity improvement over previous
searches increases the spatial volume sampled by an average factor of about 100
over the entire search band. For a neutron star with nominal equatorial
ellipticity of 1.0E-6, the search is sensitive to distances as great as 500
pc--a range that could encompass many undiscovered neutron stars, albeit only a
tiny fraction of which would likely be rotating fast enough to be accessible to
LIGO. This ellipticity is at the upper range thought to be sustainable by
conventional neutron stars and well below the maximum sustainable by a strange
quark star.Comment: 6 pages, 1 figur
Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects
In gravitational-wave detection, special emphasis is put onto searches that
focus on cosmic events detected by other types of astrophysical observatories.
The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical
telescopes and neutrino observatories, provide a trigger time for analyzing
gravitational wave data coincident with the event. In certain cases the
expected frequency range, source energetics, directional and progenitor
information is also available. Beyond allowing the recognition of gravitational
waveforms with amplitudes closer to the noise floor of the detector, these
triggered searches should also lead to rich science results even before the
onset of Advanced LIGO. In this paper we provide a broad review of LIGO's
astrophysically triggered searches and the sources they target
Search for Gravitational Wave Bursts from Soft Gamma Repeaters
We present the results of a LIGO search for short-duration gravitational
waves (GWs) associated with Soft Gamma Repeater (SGR) bursts. This is the first
search sensitive to neutron star f-modes, usually considered the most efficient
GW emitting modes. We find no evidence of GWs associated with any SGR burst in
a sample consisting of the 27 Dec. 2004 giant flare from SGR 1806-20 and 190
lesser events from SGR 1806-20 and SGR 1900+14 which occurred during the first
year of LIGO's fifth science run. GW strain upper limits and model-dependent GW
emission energy upper limits are estimated for individual bursts using a
variety of simulated waveforms. The unprecedented sensitivity of the detectors
allows us to set the most stringent limits on transient GW amplitudes published
to date. We find upper limit estimates on the model-dependent isotropic GW
emission energies (at a nominal distance of 10 kpc) between 3x10^45 and 9x10^52
erg depending on waveform type, detector antenna factors and noise
characteristics at the time of the burst. These upper limits are within the
theoretically predicted range of some SGR models.Comment: 6 pages, 1 Postscript figur
First joint search for gravitational-wave bursts in LIGO and GEO600 data
We present the results of the first joint search for gravitational-wave
bursts by the LIGO and GEO600 detectors. We search for bursts with
characteristic central frequencies in the band 768 to 2048 Hz in the data
acquired between the 22nd of February and the 23rd of March, 2005 (fourth LSC
Science Run - S4). We discuss the inclusion of the GEO600 data in the
Waveburst-CorrPower pipeline that first searches for coincident excess power
events without taking into account differences in the antenna responses or
strain sensitivities of the various detectors. We compare the performance of
this pipeline to that of the coherent Waveburst pipeline based on the maximum
likelihood statistic. This likelihood statistic is derived from a coherent sum
of the detector data streams that takes into account the antenna patterns and
sensitivities of the different detectors in the network. We find that the
coherentWaveburst pipeline is sensitive to signals of amplitude 30 - 50%
smaller than the Waveburst-CorrPower pipeline. We perform a search for
gravitational-wave bursts using both pipelines and find no detection candidates
in the S4 data set when all four instruments were operating stably.Comment: 30 pages, 8 figure
Quantum state preparation and macroscopic entanglement in gravitational-wave detectors
Long-baseline laser-interferometer gravitational-wave detectors are operating
at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within
a broad frequency band. Such a low classical noise budget has already allowed
the creation of a controlled 2.7 kg macroscopic oscillator with an effective
eigenfrequency of 150 Hz and an occupation number of 200. This result, along
with the prospect for further improvements, heralds the new possibility of
experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical
behavior of objects in the realm of everyday experience - using
gravitational-wave detectors. In this paper, we provide the mathematical
foundation for the first step of a MQM experiment: the preparation of a
macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum
state, which is possible if the interferometer's classical noise beats the SQL
in a broad frequency band. Our formalism, based on Wiener filtering, allows a
straightforward conversion from the classical noise budget of a laser
interferometer, in terms of noise spectra, into the strategy for quantum state
preparation, and the quality of the prepared state. Using this formalism, we
consider how Gaussian entanglement can be built among two macroscopic test
masses, and the performance of the planned Advanced LIGO interferometers in
quantum-state preparation
Searching for a Stochastic Background of Gravitational Waves with LIGO
The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed
the fourth science run, S4, with significantly improved interferometer
sensitivities with respect to previous runs. Using data acquired during this
science run, we place a limit on the amplitude of a stochastic background of
gravitational waves. For a frequency independent spectrum, the new limit is
. This is currently the most sensitive
result in the frequency range 51-150 Hz, with a factor of 13 improvement over
the previous LIGO result. We discuss complementarity of the new result with
other constraints on a stochastic background of gravitational waves, and we
investigate implications of the new result for different models of this
background.Comment: 37 pages, 16 figure