8,852 research outputs found

    High Gain Amplifier with Enhanced Cascoded Compensation

    Get PDF
    A two-stage CMOS operational amplifier with both, gain-boosting and indirect current feedback frequency compensation performed by means of regulated cascode amplifiers, is presented. By using quasi-floating-gate transistors (QFGT) the supply requirements, the number of capacitors and the size of the compensation capacitors respect to other Miller schemes are reduced. A prototype was fabricated using a 0.5 μm technology, resulting, for a load of 45 pF and supply voltage of 1.65 V, in open-loop-gain of 129 dB, 23 MHz of gain-bandwidth product, 60o phase margin, 675 μW power consumption and 1% settling time of 28 ns

    Efficient Exploration of Quantified Uncertainty in Granular Crystals

    Get PDF
    Granular crystals present unique nonlinear properties that support standing waves. These depend on precompression and impurities. Thus, they can be used for different applications such as impact and shock dissipation. There are different models which rely on reasonable approximations and assumptions. While experimental results show good agreement with theory, there are experimental errors that are not easily explained and are usually attributed to the approximations made and phenomena that are not accounted for. This might be the result of not quantifying the uncertainty, since variables like the grain size, position, mass and Young modulus, of each particle, are uncertain. Building a response surface is computationally expensive, because the underlying mapping to be learned is a high dimensional problem. This work presents a way of quantifying uncertainty in granular crystals in a computationally efficient way. To accomplish this, a low dimensional response surface is approximated through the method of active subspaces. Within this framework, special structure within the inputs is exploited to project it onto a lower dimensional manifold. The problem of subspace approximation is then treated as an optimization problem, with the use of the Bayesian Information Criterion (BIC). We treat the underlying function to be learned as a Gaussian Process and use Gaussian process regression to generate predictive distributions for test inputs. Distributions obtained through these methods, present a model for uncertainty propagation and could potentially be used to better understand the experimental errors for different models

    Theoretical and experimental SERS study of thiocarbonyl compounds adsorbed on metal nanoparticles

    Get PDF
    Thiocarbonyl compounds have been reported to exhibit interesting biological and pharmacological properties but they are many often characterized by their toxicological effects. However the chemistry of thiobenzoic acid (TBA) and thiobenzamide (TB) has not been fully studied yet. Some of the biological studies of TBA are related to the tautomerism of thiocarboxylic acids and the important role that the -C(=O)-S and -C(=S)-O functional groups play in the catalytic activities of enzymes such as cysteine or serine proteases.1 From a chemical point of view, thiocarboxylates are an interesting type of molecules having two different donor atoms, a soft sulfur donor atom and a hard oxygen donor one. The presence of these unlike groups can lead to the bonding with metal surfaces. Likewise the interaction of thiobenzamide and their derivatives with metals is of great interest because both the sulfur and nitrogen atoms are also able to coordinate with the surface. Therefore the high affinity of these molecules for metal surfaces makes them suitable SERS target adsorbates. Taking advantage of the fact that SERS spectroscopy is both surface selective and highly sensitive we have attempted to determine the molecular structure of TBA and TB once they are adsorbed on the metal. The main objective of this work is focussed on discussing the observed vibrational wavenumber shifts of TBA and TB upon adsorption on silver nanoparticles. In this work the SERS substrates have been prepared by using different colloidal silver solutions according to the method described by Creighton et al.2 and Leopold and Lendl.3 The analysis of the vibrational wavenumbers shifts of the Raman and SERS spectra allow us to know the adsorption process (Figure 1). In the case of TBA, the wavenumber of the SERS band assigned to (C=O) vibrational mode shows an important blue shift up to 40 cm-1 with respect to the Raman whereas the (C-S) band undergoes a red shift up to 40 cm-1. These results suggest a unidentate coordination of TBA to the silver surface through the sulfur atom. On the other hand, the SERS band assigned in the case of TB to Amide III (mainly (CN)) exhibits a significant blueshift up to 41 cm-1, and the SERS band assigned to Amide I (mainly (CS)) shows a red shift up to 11 cm-1. These wavenumber shifts indicate that TB interacts to the silver surface through the sulfur atom. Interestingly, in previous SERS studies of pyridinecarboxamides and benzamide we have observed that some SERS bands assigned to 1;ring, Amide I (mainly (C=O)) and Amide III (mainly C-N)) show wavenumber shifts of +50, -50 and +10 cm-1, respectively, which were attributed to the deprotonation of carboxamide group.4,5 Finally, in order to verify experimental results DFT calculations have been carried out for different silver complexes of TBA and TB concluding that the unidentate coordination is the most likely interaction of both of them.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Effect of pretreatment with low-frequency ultrasound on quality parameters in gulupa (Passiflora edulis sims) pulp

    Get PDF
    The Gulupa (Passiflora edulis f. edulis Sims) is an expression of South America’s tropics’ biodiversity, and a source of B vitamins and amino acids. It is a climacteric export fruit for which it is necessary to incorporate emerging technologies for its conservation and transport. This work investigated the effect of ultrasound on gulupa pulp and verified the stability of the characters of interest in the shelf life of 20 days. Six treatments and a control sample were used, evaluated in triplicate, and varied in frequency (30 and 40 kHz) with an exposure time of 10, 20, and 30 min. A statistical analysis of unidirectional variances and Dunnett’s test was used. It was found that the ultrasound treatments did not affect the pH or the titratable acidity. Soluble solid results presented a significant increase (p < 0.05) (from 13.4 to 14.8% w/v) in the antioxidant capacity (from 1.13 to 1.54 µmol Trolox Equivalent (TE)/g by the ABTS•+ (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) Cationic Radical Assay and from 3.3 to 3.7 µmol TE/g by the DPPH· (2,2-diphenyl-1-picrilhydrazil) Radical Scavenging Assay). During the shelf life, ascorbic acid was the parameter that varied most (p < 0.05). It decreased from 42.7 to 21.6 mg ascorbic acid/100 g of pulp in the control sample. However, a smaller decrease was observed (23.8–24.5 mg ascorbic acid/100 g of pulp) in the 40 kHz treatments. The smallest global color difference (∆E) for the control was found in the 40 kHz treatment at 30 min through the entire shelf life (day 0 to 20). Ultrasound treatment offers a new strategy to improve and extend the shelf life of chilled gulupa pulp

    The effect of acute sleep extension vs active recovery on post exercise recovery kinetics in rugby union players

    Get PDF
    Background Elite rugby players experience poor sleep quality and quantity. This lack of sleep could compromise post-exercise recovery. Therefore, it appears central to encourage sleep in order to improve recovery kinetics. However, the effectiveness of an acute ergogenic strategy such as sleep extension on recovery has yet to be investigated among athletes. Aim To compare the effects of a single night of sleep extension to an active recovery session (CON) on post-exercise recovery kinetics. Methods In a randomised cross-over design, 10 male rugby union players participated in two evening training sessions (19:30) involving collision activity, 7-days apart. After each session, participants either extended their sleep to 10 hours or attended an early morning recovery session (07:30). Prior to (PRE), immediately after (POST 0 hour [h]), 14h (POST 14) and 36h (POST 36) post training, neuromuscular, perceptual and cognitive measures of fatigue were assessed. Objective sleep parameters were monitored two days before the training session and over the two-day recovery period. Results The training session induced substantial decreases in countermovement jump mean power and wellness across all time points, while heart rate recovery decreased at POST 0 in both conditions. Sleep extension resulted in greater total sleep time (effect size [90% confidence interval]: 5.35 [4.56 to 6.14]) but greater sleep fragmentation than CON (2.85 [2.00 to 3.70]). Between group differences highlight a faster recovery of cognitive performance following sleep extension (-1.53 [-2.33 to -0.74]) at POST 14, while autonomic function (-1.00 [-1.85 to -0.16]) and upper-body neuromuscular function (-0.78 [-1.65 to 0.08]) were better in CON. However, no difference in recovery status between groups was observed at POST 36. Conclusion The main finding of this study suggests that sleep extension could affect cognitive function positively but did not improve neuromuscular function the day after a late exercise bout.</p

    Typing Supernova Remnants Using X-ray Line Emission Morphologies

    Full text link
    We present a new observational method to type the explosions of young supernova remnants (SNRs). By measuring the morphology of the Chandra X-ray line emission in seventeen Galactic and Large Magellanic Cloud SNRs with a multipole expansion analysis (using power ratios), we find that the core-collapse SNRs are statistically more asymmetric than the Type Ia SNRs. We show that the two classes of supernovae can be separated naturally using this technique because X-ray line morphologies reflect the distinct explosion mechanisms and structure of the circumstellar material. These findings are consistent with recent spectropolarimetry results showing that core-collapse SNe are intrinsically more asymmetric.Comment: 4 pages, 1 figure, accepted for publication in ApJ

    Velocity Loss Thresholds Reliably Control Kinetic and Kinematic Outputs during Free Weight Resistance Training.

    Get PDF
    Exercise velocity and relative velocity loss thresholds (VLTs) are commonly used in velocity-based resistance training. This study aims to quantify the between-day reliability of 10%, 20%, and 30% VLTs on kinetic and kinematic outputs, changes in external load, and repetition characteristics in well-trained athletes. Using a repeated, counter-balanced crossover design, twelve semi-professional athletes completed five sets of the back squat with an external load corresponding to a mean concentric velocity of ~0.70 m·s-1 and a VLT applied. The testing sessions were repeated after four weeks of unstructured training to assess the long-term reliability of each VLT. A coefficient of variation (CV) 10% (CV: 11.14-14.92%). Alternatively, the repetitions completed within each set showed large variation (CV: 18.92-67.49%). These findings demonstrate that by utilizing VLTs, kinetic and kinematic outputs can be prescribed and replicated across training mesocycles. Thus, for practitioners wishing to reliably control the kinetic and kinematic stimulus that is being applied to their athletes, it is advised that a velocity-based approach is used

    Mating Ewes on Condensed Tannin-Containing Forages Increases Ewe Reproductive Rate and Reduces Lamb Mortality

    Get PDF
    Action of condensed tannin (CT) reduces forage protein degradation in the rumen and increases the absorption of amino acids from the small intestine (Barry & McNabb 1999). This paper reports the effects of grazing ewes on two CT-containing forages during mating upon ewe reproductive rate and lamb mortality
    corecore