133 research outputs found

    Case Report: Fibroglial Retinal Tissue in Contractile Morning Glory Disc Anomaly

    Get PDF
    The purpose of the present case is to describe a patient with tractional retinal detachment (RD) associated with contractile morning glory: a 17-year-old female, with a history of failed surgery for RD when she was 2 years old in her right eye (OD), nystagmus, and a limited visual acuity in the left eye (OS). The slit lamp examination showed phthisis bulbi in OD and the anterior segment was unremarkable in OS. Dilated fundus examination revealed a tractional RD in the posterior pole and peripapillary and preretinal fibrosis without evidence of intravitreal dispersion of retinal pigment epithelial cells. After surgery treatment, the RD resolved and the posterior segment showed a staphylomatous excavation around the optic disc anomaly with irregular contractions that folded the macular area. This were unrelated to light, breathing, or eye movements. Although morning glory disc anomaly is associated with RD, the early diagnosis can reverse structural changes. In this case, the rare association with contractile movements was found posterior to the pars plana vitrectomy after all the fibroglial epiretinal tissue was removed

    Improved Performance of an Epoxy Matrix as a Result of Combining Graphene Oxide and Reduced Graphene

    Get PDF
    We present an easy and effective way to improve the mechanical properties of an epoxy matrix by reinforcing it with a combination of graphene oxide (GO) and reduced graphene oxide (RGO). These nanocomposites were prepared with different load of nanofillers: 0.1, 0.4, 0.7, 1.0 wt% and a neat epoxy. Ratios of graphene oxide and reduced graphene (GO : RGO) employed were: 0 : 1, 0.25 : 0.75, 0.5 : 0.5, 0.75 : 0.25, and 1 : 0. Results show that with only 0.4 wt% and a ratio 0.2 : 0.75 of GO : RGO, tensile strength and tensile toughness are 52% and 152% higher than neat epoxy while modulus of elasticity was improved ~20%. The obtained results suggest that it is possible achieve advantageous properties by combining graphene in oxidized and reduced conditions as it shows a synergic effect by the presence of both nanofillers

    Laser desorption ionization time-of-flight mass spectrometry of erbium-doped Ga-Ge-Sb-S glasses.

    No full text
    International audienceRATIONALE: Rare earth-doped sulphide glasses in the Ga-Ge-Sb-S system present radiative emissions from the visible to the middle infrared range (mid-IR) range, which are of interest for a variety of applications including (bio)-chemical optical sensing, light detection, and military counter-measures. The aim of this work was to reveal structural motifs present during the fabrication of thin films by plasma deposition techniques as such knowledge is important for the optimization of thin film growth. METHODS: The formation of clusters in plasma plume from different concentrations of erbium-doped Ga5 Ge20 Sb10 S65 glasses (0.05, 0.1, and 0.5 wt. % of erbium) using laser (337 nm) desorption ionization (LDI) was studied by time-of-flight mass spectrometry (TOF MS) in both positive and negative ion mode. The stoichiometry of the Gam Gen Sbo Sp (+/-) clusters was determined via isotopic envelope analysis and computer modelling. RESULTS: Several Gam Gen Sbo Sp (+/-) singly charged clusters were found but, surprisingly, only four species (Sb3 S4 (+/-) , GaSb2 Sp (+/-) (p = 4, 5), Ga3 Sb2 S7 (+/-) ) were common to both ion modes. For the first time, species containing rare earths (GaSb2 SEr(+) and GaS6 Er2 (+) ) were identified in the plasma formed from rare earth-doped chalcogenide glasses, directly confirming the importance of gallium presence for rare earth bonding within the glassy matrix. CONCLUSIONS: The local structure of Ga-Ge-Sb-S glasses is at least partly different from the structure of species identified in plasma by mass spectrometry, as deduced from Raman scattering spectroscopy analysis; these glasses are mainly formed by [GeS4/2 ]/[GaS4/2 ] tetrahedra and [SbS3/2 ] pyramids. Extended X-ray absorption fine structure measurements show that Er(3+) ions in Ga-Ge-Sb-S glasses are surrounded by 7 sulphur atoms. Copyright © 2014 John Wiley & Sons, Ltd

    Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adult neurogenesis is a particular example of brain plasticity that is partially modulated by the endocannabinoid system. Whereas the impact of synthetic cannabinoids on the neuronal progenitor cells has been described, there has been lack of information about the action of plant-derived extracts on neurogenesis. Therefore we here focused on the effects of Δ9-tetrahydrocannabinol (THC) and Cannabidiol (CBD) fed to female C57Bl/6 and Nestin-GFP-reporter mice on proliferation and maturation of neuronal progenitor cells and spatial learning performance. In addition we used cannabinoid receptor 1 (CB1) deficient mice and treatment with CB1 antagonist AM251 in Nestin-GFP-reporter mice to investigate the role of the CB1 receptor in adult neurogenesis in detail.</p> <p>Results</p> <p>THC and CBD differed in their effects on spatial learning and adult neurogenesis. CBD did not impair learning but increased adult neurogenesis, whereas THC reduced learning without affecting adult neurogenesis. We found the neurogenic effect of CBD to be dependent on the CB1 receptor, which is expressed over the whole dentate gyrus. Similarly, the neurogenic effect of environmental enrichment and voluntary wheel running depends on the presence of the CB1 receptor. We found that in the absence of CB1 receptors, cell proliferation was increased and neuronal differentiation reduced, which could be related to CB1 receptor mediated signaling in Doublecortin (DCX)-expressing intermediate progenitor cells.</p> <p>Conclusion</p> <p>CB1 affected the stages of adult neurogenesis that involve intermediate highly proliferative progenitor cells and the survival and maturation of new neurons. The pro-neurogenic effects of CBD might explain some of the positive therapeutic features of CBD-based compounds.</p

    On the sensitivity of the HAWC observatory to gamma-ray bursts

    Full text link
    We present the sensitivity of HAWC to Gamma Ray Bursts (GRBs). HAWC is a very high-energy gamma-ray observatory currently under construction in Mexico at an altitude of 4100 m. It will observe atmospheric air showers via the water Cherenkov method. HAWC will consist of 300 large water tanks instrumented with 4 photomultipliers each. HAWC has two data acquisition (DAQ) systems. The main DAQ system reads out coincident signals in the tanks and reconstructs the direction and energy of individual atmospheric showers. The scaler DAQ counts the hits in each photomultiplier tube (PMT) in the detector and searches for a statistical excess over the noise of all PMTs. We show that HAWC has a realistic opportunity to observe the high-energy power law components of GRBs that extend at least up to 30 GeV, as it has been observed by Fermi LAT. The two DAQ systems have an energy threshold that is low enough to observe events similar to GRB 090510 and GRB 090902b with the characteristics observed by Fermi LAT. HAWC will provide information about the high-energy spectra of GRBs which in turn could help to understanding about e-pair attenuation in GRB jets, extragalactic background light absorption, as well as establishing the highest energy to which GRBs accelerate particles

    Micromechanical Properties of Injection-Molded Starch–Wood Particle Composites

    Get PDF
    The micromechanical properties of injection molded starch–wood particle composites were investigated as a function of particle content and humidity conditions. The composite materials were characterized by scanning electron microscopy and X-ray diffraction methods. The microhardness of the composites was shown to increase notably with the concentration of the wood particles. In addition,creep behavior under the indenter and temperature dependence were evaluated in terms of the independent contribution of the starch matrix and the wood microparticles to the hardness value. The influence of drying time on the density and weight uptake of the injection-molded composites was highlighted. The results revealed the role of the mechanism of water evaporation, showing that the dependence of water uptake and temperature was greater for the starch–wood composites than for the pure starch sample. Experiments performed during the drying process at 70°C indicated that the wood in the starch composites did not prevent water loss from the samples.Peer reviewe

    Study on multi-ELVES in the Pierre Auger Observatory

    Get PDF
    Since 2013, the four sites of the Fluorescence Detector (FD) of the Pierre Auger Observatory record ELVES with a dedicated trigger. These UV light emissions are correlated to distant lightning strikes. The length of recorded traces has been increased from 100 μs (2013), to 300 μs (2014-16), to 900 μs (2017-present), to progressively extend the observation of the light emission towards the vertical of the causative lightning and beyond. A large fraction of the observed events shows double ELVES within the time window, and, in some cases, even more complex structures are observed. The nature of the multi-ELVES is not completely understood but may be related to the different types of lightning in which they are originated. For example, it is known that Narrow Bipolar Events can produce double ELVES, and Energetic In-cloud Pulses, occurring between the main negative and upper positive charge layer of clouds, can induce double and even quadruple ELVES in the ionosphere. This report shows the seasonal and daily dependence of the time gap, amplitude ratio, and correlation between the pulse widths of the peaks in a sample of 1000+ multi-ELVES events recorded during the period 2014-20. The events have been compared with data from other satellite and ground-based sensing devices to study the correlation of their properties with lightning observables such as altitude and polarity

    Search for Ultra-high-energy Photons from Gravitational Wave Sources with the Pierre Auger Observatory

    Get PDF
    A search for time-directional coincidences of ultra-high-energy (UHE) photons above 10 EeV with gravitational wave (GW) events from the LIGO/Virgo runs O1 to O3 is conducted with the Pierre Auger Observatory. Due to the distinctive properties of photon interactions and to the background expected from hadronic showers, a subset of the most interesting GW events is selected based on their localization quality and distance. Time periods of 1000 s around and 1 day after the GW events are analyzed. No coincidences are observed. Upper limits on the UHE photon fluence from a GW event are derived that are typically at &amp; SIM;7 MeV cm(-2) (time period 1000 s) and &amp; SIM;35 MeV cm(-2) (time period 1 day). Due to the proximity of the binary neutron star merger GW170817, the energy of the source transferred into UHE photons above 40 EeV is constrained to be less than 20% of its total GW energy. These are the first limits on UHE photons from GW sources

    Arrival Directions of Cosmic Rays above 32 EeV from Phase One of the Pierre Auger Observatory

    Get PDF
    A promising energy range to look for angular correlations between cosmic rays of extragalactic origin and their sources is at the highest energies, above a few tens of EeV (1 EeV equivalent to 10^(18) eV). Despite the flux of these particles being extremely low, the area of similar to 3000 km^(2) covered at the Pierre Auger Observatory, and the 17 yr data-taking period of the Phase 1 of its operations, have enabled us to measure the arrival directions of more than 2600 ultra-high-energy cosmic rays above 32 EeV. We publish this data set, the largest available at such energies from an integrated exposure of 122,000 km^(2) sr yr, and search it for anisotropies over the 3.4 pi steradians covered with the Observatory. Evidence for a deviation in excess of isotropy at intermediate angular scales, with similar to 15 degrees Gaussian spread or similar to 25 degrees top-hat radius, is obtained at the 4 sigma significance level for cosmic-ray energies above similar to 40 EeV

    Searches for Ultra-High-Energy Photons at the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory, which is the largest air-shower experiment in the world, offers unprecedented exposure to neutral particles at the highest energies. Since the start of data collection more than 18 years ago, various searches for ultra-high-energy (UHE, E greater than or similar to 10^(17) eV) photons have been performed, either for a diffuse flux of UHE photons, for point sources of UHE photons or for UHE photons associated with transient events such as gravitational wave events. In the present paper, we summarize these searches and review the current results obtained using the wealth of data collected by the Pierre Auger Observatory
    corecore