71 research outputs found

    High plasma levels of soluble ST2 but not its ligand IL-33 is associated with severe forms of pediatric dengue

    Get PDF
    Q2Q1766-771Identification of early determinants of dengue disease progression, which could potentially enable individualized patient care are needed at present times. Soluble ST2 (sST2) has been recently reported to be elevated in the serum of children older than 2 years old and adults with dengue infection and it was correlated with secondary infections as well as with severe presentations of the disease. The mechanism by which secreted ST2 is linked to severe dengue and plasma leakage remains unclear. One possibility is that IL-33 ligand may be elevated, contributing to membrane bound ST2 as part of the immune activation in dengue infection. We determined plasma levels of sST2 and the ligand IL-33 in 66 children with acute secondary dengue infections clinically classified using the guidelines of the World Health Organization, 2009. Dengue infection showed significant increases in cytokines IL-12p70, IL-10, IL-8, IL-6, IL-1β and TNFα measured by flow cytometry based assay compared to uninfected individuals. In contrast, IL-33 levels remained unchanged between infected and uninfected individuals. The levels of sST2 positively correlated with values of IL-6 and IL-8 and inversely correlated with number of median value of platelet levels. In addition to circulating cytokine positive correlations we found that sST2 and isoenzyme creatine kinase-MB (CK-MB), a marker of myocardial muscle damage present in severe dengue cases were associated. Our pediatric study concluded that in dengue infections sST2 elevation does not involve concomitant changes of IL-33 ligand. We propose a study to assess its value as a predictor factor of disease severity

    Enhanced production of taxadiene in <i>Saccharomyces cerevisiae</i>

    Get PDF
    BackgroundCost-effective production of the highly effective anti-cancer drug, paclitaxel (Taxol®), remains limited despite growing global demands. Low yields of the critical taxadiene precursor remains a key bottleneck in microbial production. In this study, the key challenge of poor taxadiene synthase (TASY) solubility in S. cerevisiae was revealed, and the strains were strategically engineered to relieve this bottleneck.ResultsMulti-copy chromosomal integration of TASY harbouring a selection of fusion solubility tags improved taxadiene titres 22-fold, up to 57 ± 3 mg/L at 30 °C at microscale, compared to expressing a single episomal copy of TASY. The scalability of the process was highlighted through achieving similar titres during scale up to 25 mL and 250 mL in shake flask and bioreactor cultivations, respectively at 20 and 30 °C. Maximum taxadiene titres of 129 ± 15 mg/L and 127 mg/L were achieved through shake flask and bioreactor cultivations, respectively, of the optimal strain at a reduced temperature of 20 °C.ConclusionsThe results of this study highlight the benefit of employing a combination of molecular biology and bioprocess tools during synthetic pathway development, with which TASY activity was successfully improved by 6.5-fold compared to the highest literature titre in S. cerevisiae cell factories

    Transcriptional responses of ecologically diverse drosophila species to larval diets differing in relative sugar and protein ratios

    Get PDF
    We utilized three ecologically diverse Drosophila species to explore the influence of ecological adaptation on transcriptomic responses to isocaloric diets differing in their relative proportions of protein to sugar. Drosophila melanogaster, a cosmopolitan species that breeds in decaying fruit, exemplifies individuals long exposed to a Western diet higher in sugar, while the natural diet of the cactophilic D. mojavensis, is much lower in carbohydrates. Drosophila arizonae, the sister species of D. mojavensis, is largely cactophilic, but also utilizes rotting fruits that are higher in sugars than cacti. We exposed third instar larvae for 24 hours to diets either (1) high in protein relative to sugar, (2) diets with equal amounts of protein and sugar, and (3) diets low in protein but high in sugar. As we predicted, based upon earlier interspecific studies of development and metabolism, the most extreme differences in gene expression under different dietary conditions were found in D. mojavensis followed by D. arizonae. No differential expression among diets was observed for D. melanogaster, a species that survives well under all three conditions, with little impact on its metabolism. We suggest that these three species together provide a model to examine individual and population differences in vulnerability to lifestyle-associated health problems such as metabolic syndrome and diabetes

    CSF total tau levels are associated with hippocampal novelty irrespective of hippocampal volume

    Get PDF
    We examined the association between cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease, neural novelty responses, and brain volume in predementia old age. Methods: We conducted a cross-sectional analysis of the observational, multicentric DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) study. Seventy-six participants completed task functional magnetic resonance imaging and provided CSF (40 cognitively unimpaired, 21 experiencing subjective cognitive decline, and 15 with mild cognitive impairment). We assessed the correlation between CSF biomarkers and whole-brain functional magnetic resonance imaging novelty responses to scene images. Results: Total tau levels were specifically and negatively associated with novelty responses in the right amygdala and right hippocampus. Mediation analyses showed no evidence that these associations were dependent on the volume of hippocampus/amygdala. No relationship was found between phosphorylated-tau or Aβ42 levels and novelty responses. Discussion: Our data show that CSF levels of total tau are associated with anatomically specific reductions in novelty processing, which cannot be fully explained by atrophy

    Grupo español de cirugía torácica asistida por videoimagen: método, auditoría y resultados iniciales de una cohorte nacional prospectiva de pacientes tratados con resecciones anatómicas del pulmón

    Full text link
    Introduction: our study sought to know the current implementation of video-assisted thoracoscopic surgery (VATS) for anatomical lung resections in Spain. We present our initial results and describe the auditing systems developed by the Spanish VATS Group (GEVATS). Methods: we conducted a prospective multicentre cohort study that included patients receiving anatomical lung resections between 12/20/2016 and 03/20/2018. The main quality controls consisted of determining the recruitment rate of each centre and the accuracy of the perioperative data collected based on six key variables. The implications of a low recruitment rate were analysed for '90-day mortality' and 'Grade IIIb-V complications'. Results: the series was composed of 3533 cases (1917 VATS; 54.3%) across 33 departments. The centres' median recruitment rate was 99% (25-75th:76-100%), with an overall recruitment rate of 83% and a data accuracy of 98%. We were unable to demonstrate a significant association between the recruitment rate and the risk of morbidity/mortality, but a trend was found in the unadjusted analysis for those centres with recruitment rates lower than 80% (centres with 95-100% rates as reference): grade IIIb-V OR=0.61 (p=0.081), 90-day mortality OR=0.46 (p=0.051). Conclusions: more than half of the anatomical lung resections in Spain are performed via VATS. According to our results, the centre's recruitment rate and its potential implications due to selection bias, should deserve further attention by the main voluntary multicentre studies of our speciality. The high representativeness as well as the reliability of the GEVATS data constitute a fundamental point of departure for this nationwide cohort

    Author Correction: Native diversity buffers against severity of non-native tree invasions.

    Get PDF

    Native diversity buffers against severity of non-native tree invasions

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2^{1,2}. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4^{3,4}. Here, leveraging global tree databases5,6,7^{5,6,7}, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions

    The global biogeography of tree leaf form and habit.

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling

    Native diversity buffers against severity of non-native tree invasions.

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions

    The global biogeography of tree leaf form and habit

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling
    corecore