11 research outputs found

    S6 Permutein Shows That the Unusual Target Topology is Not Responsible for the Absence of Rigid Tertiary Structure in De Novo Protein Albebetin

    No full text
    Ribosomal protein S6 from Thermus thermophilus was modified to form the unusual unique topology designed earlier for a de novo protein albebetin. The S6 gene was cloned, sequenced and circularly permutated by means of genetic engineering methods. The permutated gene was expressed in Escherichia coli and the permutein was isolated and investigated by means of circular dichroism, fluorescence spectroscopy and scanning microcalorimetry. The permutated protein revealed a pronounced secondary structure close to that of the wild type S6 protein and a rigid tertiary structure possessing cooperative temperature melting. It means that the unusual new topology of albebetin is compatible with a rigid tertiary structure, it may be realized in natural proteins and it is not responsible for the absence of rigid structure in albebetin

    Structure and Stability of Recombinant Protein Depend on the Extra N-terminal Methionine Residue: S6 Permutein from Direct and Fusion Expression Systems

    No full text
    Two permuted variants of S6 ribosomal protein were obtained in direct and fusion expression systems, respectively. The product of direct expression contained the extra N-terminal methionine residue. The structural properties and conformational stability of these permuteins were compared using 1-D 1H-NMR, circular dichroism, intrinsic fluorescence, differential scanning calorimetry and resistance to urea-induced unfolding. A pronounced difference in all the parameters studied has been demonstrated. This means that the structure of recombinant protein can be sensitive to peculiarities of the expression and purification procedures, leading particularly to the presence or absence of the Met at the first position in the target protein sequence

    Quantitative Evaluation of Colloidal Stability of Antibody Solutions using PEG-Induced Liquid–Liquid Phase Separation

    No full text
    Colloidal stability of antibody solutions, i.e., the propensity of the folded protein to precipitate, is an important consideration in formulation development of therapeutic monoclonal antibodies. In a protein solution, different pathways including crystallization, colloidal aggregation, and liquid–liquid phase separation (LLPS) can lead to the formation of precipitates. The kinetics of crystallization and aggregation are often slow and vary from protein to protein. Due to the diverse mechanisms of these protein condensation processes, it is a challenge to develop a standardized test for an early evaluation of the colloidal stability of antibody solutions. LLPS would normally occur in antibody solutions at sufficiently low temperature, provided that it is not preempted by freezing of the solution. Poly­(ethylene glycol) (PEG) can be used to induce LLPS at temperatures above the freezing point. Here, we propose a colloidal stability test based on inducing LLPS in antibody solutions and measuring the antibody concentration of the dilute phase. We demonstrate experimentally that such a PEG-induced LLPS test can be used to compare colloidal stability of different antibodies in different solution conditions and can be readily applied to high-throughput screening. We have derived an equation for the effects of PEG concentration and molecular weight on the results of the LLPS test. Finally, this equation defines a binding energy in the condensed phase, which can be determined in the PEG-induced LLPS test. This binding energy is a measure of attractive interactions between antibody molecules and can be used for quantitative characterization of the colloidal stability of antibody solutions

    Structural and thermodynamic effects of ANS binding to human interleukin-1 receptor antagonist

    No full text
    Although 8-anilinonaphthalene-1-sulfonic acid (ANS) is frequently used in protein folding studies, the structural and thermodynamic effects of its binding to proteins are not well understood. Using high-resolution two-dimensional NMR and human interleukin-1 receptor antagonist (IL-1ra) as a model protein, we obtained detailed information on ANS–protein interactions in the absence and presence of urea. The effects of ambient to elevated temperatures on the affinity and specificity of ANS binding were assessed from experiments performed at 25°C and 37°C. Overall, the affinity of ANS was lower at 37°C compared to 25°C, but no significant change in the site specificity of binding was observed from the chemical shift perturbation data. The same site-specific binding was evident in the presence of 5.2 M urea, well within the unfolding transition region, and resulted in selective stabilization of the folded state. Based on the two-state denaturation mechanism, ANS-dependent changes in the protein stability were estimated from relative intensities of two amide resonances specific to the folded and unfolded states of IL-1ra. No evidence was found for any ANS-induced partially denatured or aggregated forms of IL-1ra throughout the experimental conditions, consistent with a cooperative and reversible denaturation process. The NMR results support earlier observations on the tendency of ANS to interact with solvent-exposed positively charged sites on proteins. Under denaturing conditions, ANS binding appears to be selective to structured states rather than unfolded conformations. Interestingly, the binding occurs within a previously identified aggregation-critical region in IL-1ra, thus providing an insight into ligand-dependent protein aggregation
    corecore