11 research outputs found

    Seafloor biodiversity of Canada's three oceans: patterns, hotspots and potential drivers

    Get PDF
    Aim We examined the relationships between bathymetry, latitude and energy and the diversity of marine benthic invertebrates across wide environmental ranges of Canada's three oceans. Location Canadian Pacific, Arctic and Atlantic Oceans from the intertidal zone to upper bathyal depths, encompassing 13 marine ecoregions. Methods We compiled 35 benthic datasets that encompass 3,337 taxa (70% identified to species and 21% to genus) from 13,172 samples spanning 6,117 sites. Partitioning the analyses by different gear types, ecoregions or sites, we used Hill numbers to examine spatial patterns in α‐diversity. We used resampling and extrapolation to standardized sampling effort and examined the effects of depth, latitude, chemical energy (export particulate organic carbon [POC] flux), thermal energy (bottom temperature) and seasonality of primary production on the benthic biodiversity. Results The Canadian Arctic harboured the highest benthic diversity (e.g. epifauna and common and dominant infauna species), whereas the lowest diversity was found in the Atlantic. The Puget Trough (Pacific), Beaufort Sea, Arctic Archipelago, Hudson Bay, Northern Labrador and Southern Grand Bank (Atlantic) were the “hotspots" of diversity among the ecoregions. The infauna and epifauna both exhibited hump‐shaped diversity–depth relationships, with peak diversity near shelf breaks; latitude (positively) predicted infaunal diversity, albeit weakly. Food supply, as inferred from primary production and depth, was more important than thermal energy in controlling diversity patterns. Limitations with respect to calculating POC flux in coastal (e.g. terrestrial runoff) and ice‐covered regions or biological interactions may explain the negative POC flux–infaunal diversity relationship. Main Conclusions We show previously unreported diversity hotspots in the Canadian Arctic and in other ecoregions. Our analyses reveal potential controlling mechanisms of large‐scale benthic biodiversity patterns in Canada's three oceans, which are inconsistent with the prevailing view of seafloor energy–diversity relationships. These results provide insightful information for conservation that can help to implement further MPA networks

    The BenBioDen database, a global database for meio-, macro- and megabenthic biomass and densities

    Get PDF
    Benthic fauna refers to all fauna that live in or on the seafloor, which researchers typically divide into size classes meiobenthos (32/64 ”m–0.5/1 mm), macrobenthos (250 ”m–1 cm), and megabenthos (>1 cm). Benthic fauna play important roles in bioturbation activity, mineralization of organic matter, and in marine food webs. Evaluating their role in these ecosystem functions requires knowledge of their global distribution and biomass. We therefore established the BenBioDen database, the largest open-access database for marine benthic biomass and density data compiled so far. In total, it includes 11,792 georeferenced benthic biomass and 51,559 benthic density records from 384 and 600 studies, respectively. We selected all references following the procedure for systematic reviews and meta-analyses, and report biomass records as grams of wet mass, dry mass, or ash-free dry mass, or carbon per m2 and as abundance records as individuals per m2. This database provides a point of reference for future studies on the distribution and biomass of benthic fauna

    TOBB: Canada's three oceans of benthic biodiversity database

    No full text
    This dataset contain abundance data from Canadian Pacific, Arctic, and Atlantic Oceans from the intertidal zone to upper bathyal depths, encompassing 13 marine ecoregions. 35 benthic datasets that encompass 3,337 taxa (70% identified to species and 21% to genus) from 13,172 samples spanning 6,117 sites. Abiotic data from these ecoregions includes lat long, depth, latitude, chemical energy (export particulate organic carbon [POC] flux), thermal energy (bottom temperature), and seasonality of primary production on the benthic biodiversity
    corecore