274 research outputs found

    PPARδ Activity in Cardiovascular Diseases: A Potential Pharmacological Target

    Get PDF
    Activation of peroxisome proliferator-activated receptors (PPARs), and particularly of PPARα and PPARγ, using selective agonists, is currently used in the treatment of metabolic diseases such as hypertriglyceridemia and type 2 diabetes mellitus. PPARα and PPARγ anti-inflammatory, antiproliferative and antiangiogenic properties in cardiovascular cells were extensively clarified in a variety of in vitro and in vivo models. In contrast, the role of PPARδ in cardiovascular system is poorly understood. Prostacyclin, the predominant prostanoid released by vascular cells, is a putative endogenous agonist for PPARδ, but only recently PPARδ selective synthetic agonists were found, improving studies about the physiological and pathophysiological roles of PPARδ activation. Recent reports suggest that the PPARδ activation may play a pivotal role to regulate inflammation, apoptosis, and cell proliferation, suggesting that this transcriptional factor could become an interesting pharmacological target to regulate cardiovascular cell apoptosis, proliferation, inflammation, and metabolism

    Understanding the Effects of Antipsychotics on Appetite Control

    Get PDF
    Antipsychotic drugs (APDs) represent a cornerstone in the treatment of schizophrenia and other psychoses. The effectiveness of the first generation (typical) APDs are hampered by so-called extrapyramidal side effects, and they have gradually been replaced by second (atypical) and third-generation APDs, with less extrapyramidal side effects and, in some cases, improved efficacy. However, the use of many of the current APDs has been limited due to their propensity to stimulate appetite, weight gain, and increased risk for developing type 2 diabetes and cardiovascular disease in this patient group. The mechanisms behind the appetite-stimulating effects of the various APDs are not fully elucidated, partly because their diverse receptor binding profiles may affect different downstream pathways. It is critical to identify the molecular mechanisms underlying drug-induced hyperphagia, both because this may lead to the development of new APDs, with lower appetite-stimulating effects but also because such insight may provide new knowledge about appetite regulation in general. Hence, in this review, we discuss the receptor binding profile of various APDs in relation to the potential mechanisms by which they affect appetite.publishedVersio

    Activation of the peroxisome proliferator-activated receptor α protects against myocardial ischaemic injury and improves endothelial vasodilatation

    Get PDF
    BACKGROUND: The peroxisome proliferator-activated receptor α (PPARα) plays an important role in the metabolism of lipoproteins and fatty acids, and seems to protect against the development of atherosclerosis. To evaluate the possible protective role of PPARα on cardiovascular function, the effect of the PPARα agonist, fenofibrate was assessed with respect to ischaemia/reperfusion injury and endothelial function in mice. RESULTS: Fenofibrate treatment reduces myocardial infarction size and improves post-ischaemic contractile dysfunction. Hearts from PPARα null mice exhibit increased susceptibility to ischaemic damages and were refractory to protection by fenofibrate treatment suggesting that the beneficial effects of fenofibrate were mediated via PPARα. Furthermore, fenofibrate improves endothelium- and nitric oxide-mediated vasodilatation in aorta and mesenteric vascular bed. A decreased inhibitory effect of reactive oxygen species in the vessel wall accounts for enhanced endothelial vasodilatation. However, the latter cannot be explained by an increase in nitric oxide synthase expression nor by an increase sensitivity of the arteries to nitric oxide. CONCLUSIONS: Altogether the present data suggest that fenofibrate exerts cardioprotective effect against ischaemia and improves nitric oxide-mediated response probably by enhancing antioxidant capacity of the vessel wall. These data underscore new therapeutic perspectives for PPARα agonists in ischaemic myocardial injury and in cardiovascular diseases associated with endothelial dysfunction

    Hepatic protein tyrosine phosphatase 1B (PTP1B) deficiency protects against obesity-induced endothelial dysfunction

    Get PDF
    Acknowledgments This work was supported by a Diabetes UK project grant to Dr M. Delibegović (BDARD08/0003597), Tenovus Scotland grant to Dr. M. Delibegovic and Dr. A. Agouni and travel grants from the Physiological Society and Company of Biologists to Dr. A. Agouni. Dr Delibegovic is also funded by an RCUK Fellowship, British Heart Foundation, EFSD/Lilly diabetes programme grant and the Royal Society. Dr Agouni is funded by the Royal Society and the Physiological Society. This work is supported by the INSERM and CHU of Angers. The authors are thankful to the functional imaging center of Angers (CIFAB) for the use of echocardiography.Peer reviewedPostprin

    In vitro vasorelaxation mechanisms of bioactive compounds extracted from Hibiscus sabdariffa on rat thoracic aorta

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this study, we suggested characterizing the vasodilator effects and the phytochemical characteristics of a plant with food usage also used in traditional treatment of arterial high blood pressure in Senegal.</p> <p>Methods</p> <p>Vascular effects of crude extract of dried and powdered calyces of <it>Hibiscus sabdariffa </it>were evaluated on isolated thoracic aorta of male Wistar rats on organ chambers. The crude extract was also enriched by liquid-liquid extraction. The various cyclohexane, dichloromethane, ethyl acetate, butanol extracts obtained as well as the residual marc were subjected to Sephadex LH-20 column chromatography. The different methanolic eluate fractions were then analyzed by Thin Layer (TLC) and High Performance Liquid Chromatography (HPLC) and their vascular effects also evaluated.</p> <p>Results</p> <p>The H. Sabdariffa crude extract induced mainly endothelium-dependent relaxant effects. The endothelium-dependent relaxations result from NOS activation and those who not dependent to endothelium from activation of smooth muscle potassium channels. The phytochemical analysis revealed the presence of phenolic acids in the ethyl acetate extract and anthocyans in the butanolic extract. The biological efficiency of the various studied extracts, in term of vasorelaxant capacity, showed that: Butanol extract > Crude extract > Residual marc > Ethyl acetate extract. These results suggest that the strong activity of the butanolic extract is essentially due to the presence of anthocyans found in its fractions 43-67.</p> <p>Conclusion</p> <p>These results demonstrate the vasodilator potential of <it>hibiscus sabdariffa </it>and contribute to his valuation as therapeutic alternative.</p

    Paradoxical Effect of Nonalcoholic Red Wine Polyphenol Extract, Provinols™, in the Regulation of Cyclooxygenases in Vessels from Zucker Fatty Rats (fa/fa)

    Get PDF
    The aim of this work was to study the vascular effects of dietary supplementation of a nonalcoholic red wine polyphenol extract, Provinols, in Zucker fatty (ZF) obese rats. ZF or lean rats received diet supplemented or not with Provinols for 8 weeks. Vasoconstriction in response to phenylephrine (Phe) was then assessed in small mesenteric arteries (SMA) and the aorta with emphasis on the contribution of cyclooxygenases (COX). Although no difference in vasoconstriction was observed between ZF and lean rats both in SMA and the aorta, Provinols affected the contribution of COX-derived vasoconstrictor agents. The nonselective COX inhibitor, indomethacin, reduced vasoconstriction in vessels from both groups; however, lower efficacy was observed in Provinols-treated rats. This was associated with a reduction in thromboxane-A2 and 8-isoprostane release. The selective COX-2 inhibitor, NS398, reduced to the same extent vasoconstriction in aortas from ZF and Provinols-treated ZF rats. However, NS398 reduced response to Phe only in SMA from ZF rats. This was associated with a reduction in 8-isoprostane and prostaglandin-E release. Paradoxically, Provinols decreased COX-2 expression in the aorta, while it increased its expression in SMA. We provide here evidence of a subtle and paradoxical regulation of COX pathway by Provinols vessels from obese rats to maintain vascular tone within a physiological range

    Propionyl-L-carnitine corrects metabolic and cardiovascular alterations in diet-induced obese mice and improves liver respiratory chain activity

    Get PDF
    Aims: Obesity is a primary contributor to acquired insulin resistance leading to the development of type 2 diabetes and cardiovascular alterations. The carnitine derivate, propionyl-L-carnitine (PLC), plays a key role in energy control. Our aim was to evaluate metabolic and cardiovascular effects of PLC in diet-induced obese mice. Methods: C57BL/6 mice were fed a high-fat diet for 9 weeks and then divided into two groups, receiving either free- (vehicle-HF) or PLC-supplemented water (200 mg/kg/day) during 4 additional weeks. Standard diet-fed animals were used as lean controls (vehicle-ST). Body weight and food intake were monitored. Glucose and insulin tolerance tests were assessed, as well as the HOMAIR, the serum lipid profile, the hepatic and muscular mitochondrial activity and the tissue nitric oxide (NO) liberation. Systolic blood pressure, cardiac and endothelial functions were also evaluated. Results: Vehicle-HF displayed a greater increase of body weight compared to vehicle-ST that was completely reversed by PLC treatment without affecting food intake. PLC improved the insulin-resistant state and reversed the increased total cholesterol but not the increase in free fatty acid, triglyceride and HDL/LDL ratio induced by high-fat diet. Vehicle-HF exhibited a reduced cardiac output/body weight ratio, endothelial dysfunction and tissue decrease of NO production, all of them being improved by PLC treatment. Finally, the decrease of hepatic mitochondrial activity by high-fat diet was reversed by PLC. Conclusions: Oral administration of PLC improves the insulin-resistant state developed by obese animals and decreases the cardiovascular risk associated to this metabolic alteration probably via correction of mitochondrial function
    corecore