70 research outputs found

    Local rigidity, bifurcation, and stability of Hf-hypersurfaces in weighted Killing warped products

    Get PDF
    In a weighted Killing warped product Mn f ×ρR with warping metric h , iM+ρ2 dt, where the warping function ρ is a real positive function defined on Mn and the weighted function f does not depend on the parameter t ∈ R, we use equivariant bifurcation theory in order to establish sufficient conditions that allow us to guarantee the existence of bifurcation instants, or the local rigidity for a family of open sets {Ωγ}γ∈I whose boundaries ∂Ωγ are hypersurfaces with constant weighted mean curvature. For this, we analyze the number of negative eigenvalues of a certain Schrödinger operator and study its evolution. Furthermore, we obtain a characterization of a stable closed hypersurface x: Σn ,→ Mn f ×ρ R with constant weighted mean curvature in terms of the first eigenvalue of the f-Laplacian of Σn

    The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability

    Get PDF
    Chromobacterium violaceum is one of millions of species of free-living microorganisms that populate the soil and water in the extant areas of tropical biodiversity around the world. Its complete genome sequence reveals (i) extensive alternative pathways for energy generation, (ii) ≈500 ORFs for transport-related proteins, (iii) complex and extensive systems for stress adaptation and motility, and (iv) wide-spread utilization of quorum sensing for control of inducible systems, all of which underpin the versatility and adaptability of the organism. The genome also contains extensive but incomplete arrays of ORFs coding for proteins associated with mammalian pathogenicity, possibly involved in the occasional but often fatal cases of human C. violaceum infection. There is, in addition, a series of previously unknown but important enzymes and secondary metabolites including paraquat-inducible proteins, drug and heavy-metal-resistance proteins, multiple chitinases, and proteins for the detoxification of xenobiotics that may have biotechnological applications

    Anemia Falciforme: Um Problema Nosso. Uma abordagem bioética sobre a nova genética Sickle Cell Anaemia: A Brazilian Problem.A bioethical approach to the new genetics

    No full text
    Este artigo analisa uma das ações educativas adotadas pelo Ministério da Saúde no campo das hemoglobinopatias: o folheto informativo Anemia Falciforme: Um Problema Nosso. O objetivo é discutir as premissas e os valores morais que se encontram associados a iniciativas no campo da educação genética, tendo as políticas públicas sobre anemia falciforme no Brasil como estudo de caso. A análise mostra que o conteúdo do folheto oscila entre políticas de prevenção para doenças e promoção de direitos fundamentais, uma característica da nova genética. Além disso, o excesso de informação biomédica especializada no folheto dificulta sua divulgação em massa. Os resultados encontrados foram discutidos à luz do debate bioético contemporâneo sobre a nova genética.<br>This article analyzes one of the educational initiatives of the Brazilian Ministry of Health on hemoglobinopathies: the leaflet entitled Sickle Cell Anaemia: A Brazilian Problem. The purpose is to discuss the moral values associated with initiatives in genetics education, and the case study focuses on public policies related to sickle cell anaemia in Brazil. The analysis shows that the topics in the leaflets fluctuate between disease prevention policies and human rights protection, a basic characteristic of the new genetics. In addition, the leaflet’s excessive biomedical information hinders understanding by lay readers. The results are analyzed in the light of the contemporary bioethical debate on the new genetics

    Genomic analysis of two phlebotomine sand fly vectors of Leishmania from the New and Old World.

    Get PDF
    Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites

    Insulin signaling pathway annotation.

    No full text
    Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites.</div

    Molecular phylogenetic analysis of vertebrate and invertebrate photolyases containing <i>Lu</i>. <i>longipalpis</i> and <i>P</i>. <i>papatasi</i> gene models.

    No full text
    The different photoyases are displayed on the right. The evolutionary history was inferred by using the Maximum Likelihood method based on the Jones-Taylor-Thorton + four gamma categories with 1000 bootstrap replicates (showing only above 65). Sequences with squares are vertebrate cryptochromes (black—cry-4, white—cry-1, cry-2, and cry-3); sequences with black traingles represent (6–4) insect photolyases; sequences with inverted black triangles are reprenting all insect photolyase repir proteins; and sequences with a dot symbol show insect cryptochromes (black–cry-1, white–cry-2). Dashed arrows point to P. papatasi photolyase sequences and straight arrows to Lu. longipalpois photolyase sequences. (TIF)</p

    Methods used for manual annotation.

    No full text
    Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites.</div

    MicroRNA annotation.

    No full text
    Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites.</div
    corecore