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Abstract: In a weighted Killing warped productMn
f ×ρR with warping metric 〈 , 〉M+

ρ2 dt, where the warping function ρ is a real positive function defined on Mn and
the weighted function f does not depend on the parameter t ∈ R, we use equi-

variant bifurcation theory in order to establish sufficient conditions that allow us to

guarantee the existence of bifurcation instants, or the local rigidity for a family of
open sets {Ωγ}γ∈I whose boundaries ∂Ωγ are hypersurfaces with constant weighted

mean curvature. For this, we analyze the number of negative eigenvalues of a certain

Schrödinger operator and study its evolution. Furthermore, we obtain a characteriza-
tion of a stable closed hypersurface x : Σn ↪→Mn

f ×ρ R with constant weighted mean

curvature in terms of the first eigenvalue of the f -Laplacian of Σn.

2010 Mathematics Subject Classification: Primary: 58J55, 35B32, 53C42; Sec-

ondary: 35P15.

Key words: weighted Killing warped products, Hf -hypersurfaces, f -minimal hy-

persurfaces, local rigidity, bifurcation, f -stability.

1. Introduction and statements of the results

According to Barbosa and do Carmo in [5], and Barbosa, do Carmo,
and Eschenburg in [6], any closed hypersurface Σn with constant mean

curvature (CMC) in a Riemannian manifold M
n+1

(n ≥ 2) is a critical
point of the variational problem of minimizing the area functional for

volume-preserving variations. Moreover, when M
n+1

has constant sec-
tional curvature c, they also established that geodesic spheres are the
only stable critical points for this variational problem.

As observed in [2, 9, 10], the set of trial maps for the variational
problem should be a collection of embeddings of CMC hypersurfaces Σn

into M
n+1

. In order to detect solutions that are not isometrically congru-
ent, one should take into consideration the action of the diffeomorphism
group of Σn, acting by right composition in the space of embeddings,

and the action of the isometry group of M
n+1

, acting by left compo-
sition on the space of embeddings. Note that the area and the volume
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functionals are invariant by the action of these two groups. The action
of the diffeomorphism group of Σn on any set of embeddings of CMC

hypersurfaces Σn into M
n+1

is free, which suggests that one should
consider a quotient of the space of embeddings by this action. This

means that two embeddings of CMC hypersurfaces x1 : Σn ↪→ M
n+1

and x2 : Σn ↪→ M
n+1

will be considered equivalent if there exists a dif-
feomorphism φ : Σn → Σn such that x2 = x1 ◦φ. As to the left action of

the isometry group of M
n+1

, this is not free; nevertheless, the group is
compact, and one can study a bifurcation problem for its critical orbits.
Thus, the variational problem described above provides us with a frame-
work where we can study the equivariant bifurcation (cf. [2, 10, 9, 28])
in a set of equivalence classes of embeddings of CMC hypersurfaces Σn

into M
n+1

.
In this context, Aĺıas and Piccione in [2] studied the bifurcation of

CMC Clifford torus of the form xn,jr : Sj(r)× Sn−j(
√

1− r2) ↪→ Sn+1 in
unit Euclidean sphere Sn+1, where j ∈ {1, . . . , n} and r ∈ (0, 1). More
precisely, they showed that the existence of two infinite sequences xn,jri :

Sj(ri) × Sn−j(
√

1− r2
i ) ↪→ Sn+1 and xn,jsl : Sj(sl) × Sn−j(

√
1− s2

l ) ↪→
Sn+1 that are not isometrically congruent to the CMC Clifford torus,
and accumulating at some CMC Clifford torus, where {ri}i≥3, {sl}l≥3 ⊂
(0, 1), are sequences of real numbers such that limi→∞ ri = 1 and
liml→∞ sl = 0. Furthermore, they also showed that for all other values of
r ∈ (0, 1) the family of CMC Clifford torus xn,jr : Sj(r)×Sn−j(

√
1− r2) ↪→

Sn+1 is locally rigid, in the sense that any CMC embedding of Sj(r) ×
Sn−j(

√
1− r2) into Sn+1 which is sufficiently close to xn,jr must be iso-

metrically congruent to an embedding of the CMC Clifford family. Later,
de Lima, de Lira, and Piccione ([16]) adapted the methods of [2] to ob-
tain bifurcation and local rigidity results for a family of CMC Clifford
torus in 3-dimensional Berger spheres S3

τ , with τ > 0.
More recently, Koiso, Palmer, and Piccione ([23]) proved bifurcation

results for (compact portions of) nodoids in the 3-dimensional Euclidean
space R3, whose boundary consists of two fixed coaxial circles of the
same radius lying in parallel planes. Moreover, the same authors provide
in [24] criteria for the existence of bifurcation branches of fixed boundary
CMC surfaces in R3 and they discuss stability/instability issues for the
surfaces in bifurcating branches.

Meanwhile, Garćıa-Mart́ınez and Herrera in [20] deduced some bi-
furcation and local rigidity results for a certain family of CMC hyper-
surfaces in a class of Riemannnian warped products of the form (I ×ρ
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Mn, dt2 + ρ2〈 , 〉M ), namely, in product manifolds I ×Mn endowed with
the warping metric dt2 +ρ2〈 , 〉M , where I ⊂ R is an open interval, ρ is a
real positive function defined on I, called warping function, and Mn is a
closed Riemannian manifold with Riemannian metric 〈 , 〉M , called Rie-
mannian fiber. Such results are obtained considering some appropriate
hypotheses that depend of the behavior of the eigenvalues of Laplacian
operator on Mn.

On the other hand, on a complete Riemannian manifold M
n+1

, let us

remember that the classical Laplace operator ∆ on M
n+1

can be defined
as the differential operator associated to the standard Dirichlet form

Q(u) =

∫
M

|∇u|2 dV, u ∈ C∞c (M) ⊂ L2(dV ),

where | | is the norm induced by the Riemannian metric 〈 , 〉 of M
n+1

,

dV is the volume element on M
n+1

, L2(dV ) denotes the set of measur-

able functions u on M
n+1

such that the Lebesgue integral (with respect
to dV ) of |u|2 exists and is finite, and C∞c (M) is the set of all smooth

functions defined in M
n+1

with compact support. Now, let f ∈ C∞(M),
that will be referred as a weight function. If we replace the measure dV
with the weighted measure dσ = e−f dV in the definition of Q, we obtain
a new quadratic form Qf , and we will denote by ∆f the elliptic opera-

tor on C∞c (M) ⊂ L2(dσ) induced by Qf . In this sense, ∆f arises as a
natural generalization of the Laplacian. It is clearly symmetric, positive,
and extends to a positive operator on L2(dσ). By Stokes’ theorem,

∆f (u) = ∆u− 〈∇u,∇f〉, u ∈ C∞c (M).

The triple (M
n+1

, 〈 , 〉, dσ) and the differential operator ∆f defined

above and acting on C∞(M) will be called, respectively, the weighted

manifold associated withM
n+1

and f , which we simply denote byM
n+1

f ,
and the f -Laplacian. In this setting, we recall that a notion of curvature
for weighted manifolds goes back to Lichnerowicz [25, 26] and it was

later developed by Bakry and Émery in their seminal work [3], where
they introduced the following modified Ricci curvature Ricf = Ric +

Hess f , where Ric and Hess are the standard Ricci tensor and the Hessian

on M
n+1

f , respectively. As is common in the current literature, we will

refer to this tensor as being the Bakry–Émery–Ricci tensor of M
n+1

f . We

note that the interplay between the geometry of M
n+1

and the behavior
of the weighted function f is mostly taken into account by means of its
Bakry–Émery–Ricci tensor Ricf (cf. [29]).
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On the other hand, it is well known that Killing vector fields are
important objects which have been widely used in order to understand
the geometry of submanifolds and, more particularly, of hypersurfaces
immersed in Riemannian spaces. Into this branch, Aĺıas, Dajczer, and
Ripoll ([1]) extended the classical Bernstein’s theorem [8] to the con-
text of complete minimal surfaces in Riemannian spaces of nonnegative
Ricci curvature carrying a Killing vector field. This was done under the
assumption that the sign of the angle function between a global Gauss
mapping and the Killing vector field remains unchanged along the sur-
face. Afterwards, Dajczer, Hinojosa, and de Lira ([15]) defined a no-
tion of Killing graph in a class of Riemannian manifolds endowed with
a Killing vector field and solved the corresponding Dirichlet problem
for prescribed mean curvature under hypothesis involving domain data
and the Ricci curvature of the ambient space. Later on, Dajczer and de
Lira ([13]) showed that an entire Killing graph of constant mean curva-
ture contained in a slab must be a totally geodesic slice, under certain
restrictions on the curvature of the ambient space. More recently, in [14]
these same authors revisited this thematic treating the case when the
entire Killing graph of constant mean curvature contained lies inside a
possible unbounded region.

Also recently, the second author, jointly with Cunha, de Lima, Li-
ma, Jr., and Medeiros ([12]), applied suitable maximum principles in
order to obtain Bernstein type properties concerning CMC hypersur-
faces Σn immersed in a Killing warped product (Mn×ρR, 〈 , 〉M +ρ2 dt),
namely, in product manifolds Mn × R endowed with the warping met-
ric 〈 , 〉M + ρ2 dt, where Mn is a Riemannian manifold with Riemannian
tensor 〈 , 〉M , called Riemannian base, and ρ is a real positive function
defined on Mn, called warping function. To obtain these results, they as-
sumed that Mn satisfies certain constraints and that ρ is concave on Mn.
Afterwards, in [17] the second author, jointly with Lima, Jr., Medeiros,
and Santos, obtained Liouville type results concerning hypersurfaces Σn

immersed in a weighted Killing warped product Mn
f ×ρ R, where the

weighted function f does not depend on the parameter t ∈ R. For this,
they assumed suitable boundedness on the Bakry–Émery–Ricci tensor
of the base Mn. Furthermore, they also obtained rigidity results via
constraints on the height function of the hypersurface.

Proceeding with the picture described above, our purpose in this pa-
per is to study the notions of local rigidity, bifurcation instants, and
stability for a family of open sets {Ωγ}γ of a weighted Killing warped
product Mn

f ×ρ R whose boundaries ∂Ωγ are closed hypersurfaces with

constant weighted mean curvature Hf (γ) (in abbreviation, we say that
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∂Ωγ is a closed Hf (γ)-hypersurface), where γ varies on a prescribed
interval I ⊂ R.

For this, in Section 2 we record some main facts about the hypersur-
faces immersed in Mn

f ×ρ R. Next, in Subsection 3.1, for each Ωγ , we

establish the variation X : (−ε, ε)× ∂Ωγ →Mn
f ×ρ R (see (3.1)) of ∂Ωγ

and we consider the variational problems:

(VP-1): Minimizing the weighted area functional Af (see (3.5)) for all
variations of ∂Ωγ that preserve the weighted volume of Ωγ .

(VP-2): Minimizing the weighted area functional Af (see (3.5)) for all
variations of ∂Ωγ , not necessarily weighted volume-preserving
variations of Ωγ .

By an analysis of the first variation of the associated weighted Jacobi
functional

Fλ(γ)
f = Af + λ(γ)Vf , with λ(γ) ∈ R

(see (3.6)), where Vf is the weighted volume functional (see (3.4)), we
obtain in Proposition 1 that the critical points of (VP-1) and (VP-2) are
the open sets Ωγ whose boundary ∂Ωγ is a closed Hf (γ)-hypersurface
with constant weighted mean curvature Hf (γ) = λ(γ)/n. For these criti-
cal points, in Proposition 2 we obtain the formula of the second variation

of Fλ(γ)
f .

Concerning the variational problem (VP-2), in Subsection 3.2 we use
the equivariant bifurcation theory (cf. [2, 10, 9, 28]) to establish our
notions of bifurcation instants and local rigidity in terms of the Morse
index of the weighted Jacobi operator Jf ;γ (see (3.21)). Then, in Section 4
we get some results of local rigidity and bifurcation instants in Mn

f ×ρR
via the analysis the number of negative eigenvalues of Jf ;γ . Initially, we
establish the following result of local rigidity.

Theorem 1. Let {Ωγ}γ∈I be a family of open subsets of the weighted
Killing warped product Mn

f ×ρR whose boundaries ∂Ωγ are closed Hf (γ)-
hypersurfaces. If, for all γ ∈ I, the function

Qf (γ) = R̃icf (N∗γ , N
∗
γ )− 1

ρ
H̃essρ(N∗γ , N

∗
γ )− 〈Nγ , Y 〉2

∆̃f (ρ)

ρ3
+ |Aγ |2

is constant on ∂Ωγ and the first nonzero eigenvalue µ1
f (γ) of the f -Lapla-

cian ∆f ;γ on ∂Ωγ satisfies

(1.1) µ1
f (γ)−Qf (γ) > 0,

then {Ωγ}γ∈I is locally rigid at each γ. In particular, such a family is
locally rigid if one of the following conditions holds:
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(a) R̃icf (N∗γ , N
∗
γ )− 1

ρ
H̃essρ(N∗γ , N

∗
γ )− 〈Nγ , Y 〉2

∆̃f (ρ)

ρ3
≤ −|Aγ |2;

(b) either

R̃icf (N∗γ , N
∗
γ )−1

ρ
H̃essρ(N∗γ , N

∗
γ )−〈Nγ , Y 〉2

∆̃f (ρ)

ρ3
<0 and µ1

f (γ)≥|Aγ |2,

or

R̃icf (N∗γ , N
∗
γ )−1

ρ
H̃essρ(N∗γ , N

∗
γ )−〈Nγ , Y 〉2

∆̃f (ρ)

ρ3
≤0 and µ1

f (γ)> |Aγ |2.

In Theorem 1, Y is the Killing vector field defined on the weighted
Killing warped product Mn

f ×ρ R, ρ = |Y | > 0 is the warping function,

Nγ is the unit normal vector field on ∂Ωγ , ∆̃f represents the f -Laplacian

on Mn
f , R̃icf and H̃ess are the Bakry–Émery–Ricci tensor and the Hes-

sian operator on Mn
f , |A|2 stands for the square of the norm of the shape

operator A of ∂Ωγ with respect to the orientation given by Nγ , and N∗γ is
the orthogonal projection of N onto the tangent bundle of Mn. These
notations will also be used in the statements of the next theorems.

In turn, the bifurcation instants of the family {Ωγ}γ∈I are established
in the following result.

Theorem 2. Let {Ωγ}γ be a family of open subsets of the weighted
Killing warped product Mn

f ×ρR whose boundaries ∂Ωγ are closed Hf (γ)-
hypersurfaces. Suppose that, for all γ ∈ I, the function

Qf (γ) = R̃icf (N∗γ , N
∗
γ )− 1

ρ
H̃essρ(N∗γ , N

∗
γ )− 〈Nγ , Y 〉2

∆̃f (ρ)

ρ3
+ |Aγ |2

is constant on ∂Ωγ . If there are two values γ1 and γ2, with γ1 < γ2,

such that the eigenvalues µ̂ jf (γ1) and µ̂ jf (γ2) of the weighted Jacobi op-

erators Jf ;γ1 and Jf ;γ2 (respectively) satisfy

(a) µ̂ jf (γ1) 6= 0 and µ̂ jf (γ2) 6= 0 for all j ∈ {0, 1, 2, . . . },
(b) there exists j0 ∈ {0, 1, 2, . . . } such that (µ̂ j0f (γ1))(µ̂ j0f (γ2)) < 0,

then there exists a bifurcation instant γ∗ ∈ (γ1, γ2).

Furthermore, in Section 4, when Mn is closed Riemannian manifold,
we give sufficient conditions for both the existence and nonexistence of
bifurcation instants of a certain family {Ωγ}γ of open subsets of the
weighted Killing warped product Mn

f ×ρ R (see (4.2)) whose bound-
aries ∂Ωγ are f -minimal hypersurfaces; namely, each ∂Ωγ is a hypersur-
face with f -mean curvature equal to zero (cf. Corollaries 1 and 2).
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Finally, in Section 5 we study the notion of stability for a critical point
of the variational problem (VP-1). More precisely, we established a no-
tion of f -stability for a closed Hf -hypersurface Σn immersed in Mn

f ×ρR
and, with the help of the f -Laplacian ∆f of Σn of a certain angle func-
tion Θ given in Proposition 3, we obtain the following characterization
for the f -stability:

Theorem 3. Let x : Σn ↪→ Mn
f ×ρ R be a closed Hf -hypersurface im-

mersed into weighted Killing warped product Mn
f ×ρ R. If

µ = R̃icf (N∗, N∗)− 1

ρ
H̃essρ(N∗, N∗)−Θ2 ∆̃f (ρ)

ρ3
+ |A|2

is constant, then x : Σn ↪→ Mn
f ×ρ R is f -stable if and only if µ is the

first eigenvalue of drift Laplacian ∆f on Σn.

2. Hypersurfaces in weighted Killing warped products

Unless stated otherwise, all manifold considered in this work will be
connected, while closed means compact without boundary. Throughout
this paper, we will consider an (n + 1)-dimensional Riemannian mani-

fold M
n+1

(n ≥ 2) endowed with a Killing vector field Y . Suppose that

the distribution of all vector fields of M
n+1

that are orthogonal to Y
is of constant rank and integrable. Given an integral leaf Mn of that

distribution, let Ψ: I ×Mn → M
n+1

be the flow generated by Y with
initial values in Mn, where I is a maximal interval of definition. Without
loss of generality, in what follows we will consider I = R.

In this setting, our space M
n+1

can be regarded as the Killing warped
product Mn ×ρ R, that is, the product manifold Mn × R endowed with
the warping metric

(2.1) 〈 , 〉 = π∗M (〈 , 〉M ) + (ρ ◦ πP )2π∗R(dt2),

where πM and πR denote the canonical projections from Mn × R onto
each factor, 〈 , 〉M is the induced Riemannian metric on the base Mn,
dt2 denotes the usual Riemannian metric in R, and ρ = |Y | > 0 is the
warping function. By C∞(Mn ×ρ R) we mean the ring of real functions
of class C∞ on Mn×ρR, and by X(Mn×ρR) the C∞(Mn×ρR)-module

of vector fields of class C∞ on Mn×ρR. Let ∇ and ∇̃ be the Levi–Civita
connections of Mn ×ρ R and Mn, respectively.

Now, let (Mn ×ρ R)f be a weighted Killing warped product, namely,
a Killing warped product Mn ×ρ R endowed with a weighted volume
form dσ=e−fdv, where f ∈C∞(Mn×ρR) is a real-valued function, called
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weighted function (or density function), and dv is the volume element
induced by the warping metric 〈 , 〉 defined in (2.1). For (Mn×ρR)f , the

Bakry–Émery–Ricci tensor Ricf is defined by

(2.2) Ricf = Ric + Hess f,

where Ric and Hess are the Ricci tensor and the Hessian operator
in Mn ×ρ R, respectively.

Throughout this work, we will deal with hypersurfaces x : Σn ↪→
(Mn×ρR)f immersed in a weighted Killing warped product (Mn×ρR)f
and which are two-sided. This condition means that there is a globally
defined unit normal vector field N . We let ∇ denote the Levi–Civita
connection of Σn.

In this setting, let A denote the shape operator of Σn with respect
to N , so that at each p ∈ Σn, A restricts to a self-adjoint linear map

Ap : TpΣ→ TpΣ
v 7→ Apv = −∇vN.

According to Gromov [21], the weighted mean curvature Hf , or simply
the f -mean curvature, of x : Σn ↪→ (Mn ×ρ R)f is given by

(2.3) nHf = nH + 〈∇f,N〉,
where H denotes the standard mean curvature of x : Σn ↪→ (Mn ×ρ
R)f with respect to its orientation N . When required, if a hypersurface
x : Σn ↪→ (Mn×ρR)f has constant f -mean curvature Hf , then for short
we will say that x : Σn ↪→ (Mn×ρR)f is an Hf -hypersurface. Moreover,
we recall that x : Σn ↪→ (Mn×ρR)f is called f -minimal when its f -mean
curvature vanishes identically.

The f -divergence on Σn is defined by

divf : X(Σn)→ C∞(Σn)
X 7→ divf X = divX − 〈∇f,X〉,

where div(·) denotes the standard divergence on Σn. We define the drift
Laplacian of Σn by

(2.4)
∆f : C∞(Σn)→ C∞(Σn)

u 7→ ∆f (u) = divf ∇u = ∆u− 〈∇f,∇u〉,
where ∆ is the standard Laplacian on Σn. We will also refer to such an
operator as the f -Laplacian of Σn.

Remark 1. We observe that the Killing vector field Y determines inMn×ρ
R a codimension one foliation by totally geodesic slices Mn×{t}, t ∈ R,
with respect to orientation determined by Y . Moreover, assuming that
the weighted function f ∈ C∞(Mn ×ρ R) is invariant along the flow
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determined by Y , that is, 〈∇f, Y 〉 = 0, from (2.3) we get that each
slice Mn × {t} is f -minimal.

Remark 2. We observe that the following result is a consequence of a
Cheeger–Gromoll type splitting theorem due to G. Wei and W. Wylie

(cf. Theorem 6.1 of [29]; see also Theorem 1.1 of [19]): Let M
n+1

f be a

weighted Riemannian manifold that contains a line. If the Bakry–Émery–

Ricci tensor of M
n+1

f is nonnegative and the weighted function f is
bounded, then f must be constant along the line. Consequently, in any
weighted Killing warped product (Mn×ρR)f having nonnegative Bakry–

Émery–Ricci tensor and with bounded weighted function f , we have that
f does not depend on the parameter of the flow associated to the Killing
vector field Y .

Motivated by Remarks 1 and 2, in this work we will consider Killing
warped products Mn×ρR endowed with a weighted function f does not

depend on the parameter t ∈ R, that is, 〈∇f, Y 〉 = 0. For the sake of
simplicity, we will denote such an ambient space by

Mn
f ×ρ R.

3. The variational problem and the notion of bifurcation
instants

LetM be the space of open subsets Ω of Mn
f ×ρ R with compact clo-

sure Ω and whose smooth compact boundary ∂Ω is a closed, connected,
and orientable hypersurface. For any Ω ∈M,

Volf (Ω) and Areaf (∂Ω)

will denote the f -volume and f -area of Ω and ∂Ω, respectively.

3.1. Description of the variational problem. If Ω ∈ M, the glob-
ally unit normal vector field defined on ∂Ω will be denoted by N . For
Ω ∈M, we define a variation of ∂Ω as being the smooth mapping

(3.1)
X : (−ε, ε)× ∂Ω→Mn

f ×ρ R
(s, p) 7→ X(s, p),

satisfying the following two conditions:

(1) for all s ∈ (−ε, ε), the map

(3.2)
Xs : ∂Ω ↪→Mn

f ×ρ R
p 7→ Xs(p) = X(s, p)

is an immersion;
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(2) X(0, p) = ι(p) for all p ∈ ∂Ω, where ι : ∂Ω ↪→ Ω is the inclusion
map.

In this context, given Ω ∈ M and a variation X : (−ε, ε) × ∂Ω →
Mn
f ×ρ R of ∂Ω we adopt the notation ∂Ωs = Xs(∂Ω). For values

of s small enough, ∂Ωs is also a connected and oriented n-dimensional
smooth submanifold. Moreover, it bounds an open subset Ωs whose clo-
sure is also compact. Thus, the variation X : (−ε, ε) × ∂Ω → Mn

f ×ρ R
described above induces a variation of the open subset Ω denoted by Ωs,
which is also an element of M.

In all that follows, we let d(∂Ωs) denote the volume element of the
metric induced on ∂Ωs by Xs and Ns, the unit normal vector field
along Xs. Moreover, we also consider in ∂Ωs the weighted volume form
given by dσs = e−fd(∂Ωs). When s = 0 all these objects coincide with
ones defined in ∂Ω, respectively.

The variational field associated to the variation X : (−ε, ε) × ∂Ω →
Mn
f ×ρ R is the vector field ∂X

∂s

∣∣
s=0

. Letting

(3.3) us =

〈
∂X

∂s
,Ns

〉
,

we get

∂X

∂s

∣∣∣∣
s=0

= u0N +

(
∂X

∂s

∣∣∣∣
s=0

)>
,

where (·)> stands for tangential components.
The weighted volume functional associated to the variationX: (−ε, ε)×

∂Ω→Mn
f ×ρ R is

(3.4)
Vf : (−ε, ε)→ R

s 7→ Vf (s) = Volf (Ωs) =

∫
Ωs

dσ,

and we say that X : (−ε, ε) × ∂Ω → Mn
f ×ρ R is weighted volume-

preserving of Ω if Vf (s) = Vf (0) for all s ∈ (−ε, ε).
The following result is well known and, in the context of weighted

manifolds, can be found in [11].

Lemma 1. If Ω ∈ M and X : (−ε, ε) × ∂Ω → Mn
f ×ρ R is a variation

of ∂Ω, then

d

dt
Vf (s) =

∫
∂Ωs

us dσs for all s ∈ (−ε, ε),

where us is the function defined in (3.3). In particular, X : (−ε, ε)×∂Ω→
Mn
f ×ρR is weighted volume-preserving of Ω if and only if

∫
∂Ωs

us dσs = 0

for all s ∈ (−ε, ε).
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Remark 3. We observe that is not difficult to verify that Lemma 2.2 of [6]
still remains valid for the context of weighted Riemannian manifolds,
that is, if u ∈ C∞(∂Ω) is such that

∫
∂Ω
u dσ = 0, then there exists a

weighted volume-preserving variation X : (−ε, ε)×∂Ω→Mn
f ×ρR of ∂Ω

whose variational field is ∂X
∂s

∣∣
s=0

= uN .

The weighted area functional associated to the variation X is given
by

(3.5)
Af : (−ε, ε)→ R

s 7→ Af = Areaf (∂Ωs) =

∫
∂Ωs

dσs.

Following the same steps of the proof of Lemma 3.2 of [11], it is not
difficult to see that we get the following

Lemma 2. If Ω ∈ M and X : (−ε, ε) × ∂Ω → Mn
f ×ρ R is a variation

of ∂Ω, then

d

ds
Af (s) = −n

∫
∂Ωs

(Hf )sus dσs for all s ∈ (−ε, ε),

where us is the function given in (3.3) and (Hf )s = Hf (s, ·) denotes
the f -mean curvature of ∂Ωs with respect to the metric induced by the
immersion Xs defined in (3.2).

In order to characterize open subsets Ω of Mn
f ×ρR whose boundaries

are closed hypersurfaces with constant f -mean curvature (possibly equal
to zero), we consider the variational problem (VP-1) described in Sec-
tion 1. The Lagrange multiplier method leads us then to the associated
weighted Jacobi functional

(3.6)
Fλf : (−ε, ε)→ R

s 7→ Fλf (s) = Areaf (∂Ωs) + λVolf (Ωs),

where λ is a constant to be determined (eventually λ can be zero, and
in this case, for Ω ∈ M, our variational problem reduces to minimizing
the functional Af for all variations of ∂Ω).

As an immediate consequence of Lemmas 1 and 2 we get that the first
variation of Fλf takes the following form

(3.7)
d

ds
Fλf (s) =

d

ds
Af (s) + λ

d

ds
Vf (s) =

∫
∂Ωs

{−n(Hf )s + λ}us dσs.
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Thinking about making the best possible choice of λ, let

(3.8) H =
1

Areaf (∂Ω)

∫
∂Ω

Hf dσ

be an integral mean of the f -mean curvature Hf on ∂Ω. We call the
attention to the fact that, in case Hf is constant, we have

(3.9) H = Hf ,

and this notation will be used in what follows without further comments.
Therefore, if we choose λ = nH, from (3.7) we arrive at

(3.10)
d

ds
Fλf (s) = −n

∫
∂Ωs

{(Hf )s −H}us dσs.

In particular,

(3.11)
d

ds
Fλf (0) = −n

∫
∂Ω

{Hf −H}u0 dσ.

Now, from (3.11) and following the same ideas of Proposition 2.7 of [5]
we can establish the following result.

Proposition 1. Let Ω ∈M. The following statements are equivalent:

(a) ∂Ω is a closed Hf -hypersurface with constant f -mean curvature Hf

equal to Hf = λ/n;
(b) for all weighted volume-preserving variations X : (−ε, ε) × ∂Ω →

Mn
f ×ρ R of ∂Ω, we have d

dsAf (0) = 0;

(c) for all variations X : (−ε, ε) × ∂Ω → Mn
f ×ρ R of ∂Ω, we have

d
dsF

λ
f (0) = 0.

Hence, from Proposition 1 we have that the critical points of (VP-1)
are open subsets Ω of Mn

f ×ρ R whose boundary ∂Ω is a closed Hf -hy-
persurface with constant second mean curvature Hf equal to

(3.12) Hf =
λ

n
,

with λ ∈ R. On the other hand, if we change (VP-1) to (VP-2) (see
Section 1), from Proposition 1 we obtain that the respective critical
points of (VP-2) coincide with the same critical points of the initial
variational problem (VP-1).

Remark 4. If λ = 0, we observe that the two variational problems (VP-2)
and (VP-1) coincide, in which case the respective critical points are
open subsets Ω of Mn

f ×ρ R whose boundary ∂Ω are closed f -minimal

hypersurfaces. Furthermore, from (3.6) we can observe that F0
f coincides

with the weighted area functional Af and, for each Ω ∈ M, this whole
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situation comes down to the variational problem of minimizing Af for
all variations of ∂Ω (not necessarily for those that preserve the weighted
volume of Ω).

Remark 5. As observed in [20], our approach is valid for the follow-
ing more general configuration. Assume that M is the space of open
subsets Ω ⊂ Mn

f ×ρ R whose boundary ∂Ω is the union of two disjoint
sets ∂Ω = Σn1 ∪Σn2 . We will assume that one of them, say Σn1 , is a fixed
set so that the variations considered of ∂Ω only affect Σn2 . Under this
assumption, the critical points of (VP-1) or (VP-2) will be open sub-
sets Ω such that their boundaries are the union of a (fixed) set Σn1 and
a closed Hf -hypersurface Σn2 with constant f -mean curvature Hf given
by (3.12).

For such a critical point (for either of the two variational problems
described above), the formula for the second variation of Fλf is given in
the following result.

Proposition 2. Let Ω ∈M be an open subset of Mn
f ×ρR whose bound-

ary ∂Ω is a compact Hf -hypersurface with constant f -mean curvature Hf

given by (3.12). Then the second variation d2

ds2F
λ
f (0) of the weighted Ja-

cobi functional Fλf is given by

(3.13)
d2

ds2
Fλf (0)(u) = −

∫
∂Ω

uJf (u) dσ,

for any u ∈ C∞(∂Ω), where Jf : C∞(∂Ω) → C∞(∂Ω) is the weighted
Jacobi operator given by

(3.14) Jf =∆f+R̃icf (N∗, N∗)−1

ρ
H̃essρ(N∗, N∗)−〈N,Y 〉2 ∆̃f (ρ)

ρ3
+|A|2.

Here, Y is the Killing vector field on Mn
f ×ρ R, ρ = |Y | > 0, N is the

unit normal vector field on ∂Ω, ∆f and ∆̃f represent the f -Laplacians

on ∂Ω and Mn
f , respectively, R̃icf and H̃ess are the Bakry–Émery–Ricci

tensor and the Hessian operator on Mn
f , |A|2 represents the square of the

norm of the shape operator A of ∂Ω with respect to the orientation given
by N , and N∗ is the orthogonal projection of N on the tangent bundle

of Mn. With respect to the functions on ∂Ω to be evaluated in d2

ds2F
λ
f (0)

for a critical point of (VP-1), they have to be considered according to
Remark 3, that is, smooth functions on ∂Ω whose integral mean is zero;
and, on the other hand, any smooth function on ∂Ω can be evaluated

in d2

ds2F
λ(0) for a critical point of (VP-2).
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Proof: Initially, for any variation X : (−ε, ε) × ∂Ω → Mn
f ×ρ R of ∂Ω

we consider the function u0 ∈ C∞(∂Ω) defined in (3.3). Since Hf is
constant, from (3.10) and (3.9) we have that

d2

ds2
Fλf (0)(u0) =− n

∫
∂Ω

(
∂(Hf )s
∂s

∣∣∣∣
s=0

)
u0 dσ

− n
∫
∂Ω

(
Hf −H︸ ︷︷ ︸

0

)
∂

∂s
(us dσs)

∣∣∣∣
s=0

.

Reasoning as in the proof of equation (3.5) of [11], we obtain

n
∂(Hf )s
∂s

∣∣∣∣
s=0

= ∆f (u0) + {Ricf (N,N) + |A2|}u0.

Hence,

(3.15)
d2

ds2
Fλf (0)(u0) = −

∫
∂Ω

{∆f (u0) + {Ricf (N,N) + |A|2}u0}u0 dσ.

On the other hand, denoting by N∗ and N⊥ the orthogonal projec-
tions of N over the tangent and normal bundles of Mn, respectively, and
taking into account that f is invariant along the flow determined by Y ,
from [27, Proposition 7.35] we obtain

Hess f(N,N) = 〈∇N∇f,N〉

= 〈∇N ∇̃f,N∗ +N⊥〉

= H̃ess f(N∗, N∗) +
1

ρ
〈∇̃f, ∇̃ρ〉|N⊥|2

= H̃ess f(N∗, N∗) +
1

ρ3
〈∇̃f, ∇̃ρ〉〈N,Y 〉2.

(3.16)

Moreover, from [27, Corollary 7.43] we get

(3.17) Ric(N,N) = R̃ic(N∗, N∗)− 1

ρ
H̃essρ(N∗, N∗)− 〈N,Y 〉2 ∆̃(ρ)

ρ3
.

Now, from equations (3.16) and (3.17), we have

(3.18) Ricf (N,N) = R̃icf (N∗, N∗)−1

ρ
H̃essρ(N∗, N∗)−〈N,Y 〉2 ∆̃f (ρ)

ρ3
.
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Therefore, from equations (3.18) and (3.15) we obtain

(3.19)
d2

ds2
Fλf (0)(u0) = −

∫
∂Ω

u0 Jf (u0) dσ,

where Jf is given in (3.14).
Now, for any u ∈ C∞(∂Ω), considering variations X : (−ε, ε)× ∂Ω→

Mn
f ×ρ R of ∂Ω whose variational field is ∂X

∂t

∣∣
t=0

= uN , we obtain that

the last expression (3.19) is also valid for every u ∈ C∞(∂Ω). Taking
into account the set of functions on ∂Ω that are admissible for a critical
point of (VP-2), we conclude that all the arguments stated above are
valid to provide the formula of the second variation of Fλf for critical

points of (VP-2).
For those critical points of (VP-1), if X : (−ε, ε)×∂Ω→Mn

f ×ρR is a
variation of ∂Ω which preserve the weighted volume of Ω, then for u0 ∈
C∞(∂Ω) defined in (3.3), we have from Lemma 1 that

∫
∂Ω
u0 dV = 0

and, in addition, the expression (3.19) is valid for such u0. Finally, for
any function u ∈ C∞(∂Ω) such that

∫
∂Ω
u dV = 0, from Remark 3 we

get a variation X : (−ε, ε) × ∂Ω → Mn
f ×ρ R of ∂Ω which preserves the

weighted volume of Ω such that the variational field is ∂X
∂t

∣∣
t=0

= uN ,

and it follows immediately that (3.19) is retrieved for such a u.

We conclude this subsection by noting that the weighted Jacobi oper-
ator Jf given in (3.14) belongs to a class of differential operators which
are usually referred to as Schrödinger operators, that is, operators of
the form ∆ + q, where ∆ is the standard Laplacian on ∂Ω and q is any
continuous function on ∂Ω (see, for instance, [18]). In particular, we can
highlight that the behavior of the eigenvalues of Jf is well known, and
this behavior will play an important role in obtaining the main results
of this work.

3.2. The notion of bifurcation instants for Hf -hypersurfaces
in Mn

f ×ρ R. In what follows, we consider the one-parameter fam-

ily {Ωγ}γ of open subsets in weighted Killing warped product Mn
f ×ρ R

such that the boundary of each Ωγ , denoted by ∂Ωγ , is a closedHf (γ)-hy-
persurface with constant f -mean curvature Hf (γ), where γ varies on a
prescribed interval I ⊂ R. In this context, as a consequence of our study
of Subsection 3.1, we have that each Ωγ is a critical point of a certain
variational problem of type (VP-2). More specifically, each Ωτ is a critical
point for the one-parameter family of weighted Jacobi functionals

I 3 γ 7→ Fλ(γ)
f = Af + λ(γ)Vf

defined in (3.6), where
λ(γ) = nHf (γ).
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Moreover, from Proposition 2, associated with each closed H2(γ)-hy-

persurface ∂Ωγ we have that the second variation d2

ds2F
λ(γ)
f (0) of Fλ(γ)

f

is given by

(3.20)
d2

ds2
Fλ(τ)
f (0)(u) = −

∫
∂Ω

uJf ;γ(u) dσ,

for any u ∈ C∞(∂Ωγ), where

Jf ;γ = ∆f ;γ + R̃icf (N∗γ , N
∗
γ )

− 1

ρ
H̃essρ(N∗γ , N

∗
γ )− 〈Nγ , Y 〉2

∆̃f (ρ)

ρ3
+ |Aγ |2

(3.21)

is the weighted Jacobi operator on ∂Ωγ . Here, ∆f ;γ and ∆̃f are the

f -Laplacians on ∂Ωγ andMn
f , respectively, R̃icf and H̃ess are the Bakry–

Émery–Ricci tensor and the Hessian operator in Mn
f , Aγ is the shape

operator of ∂Ωγ with respect to normal vector field Nγ , and N∗γ is the
orthogonal projection of Nγ on the tangent bundle of Mn.

With respect to our family {Ωγ}γ∈I of critical points of (VP-2), we
need to adopt some notions and results that correspond to equivariant
bifurcation theory for geometric variational problems. For more details
on this subject, we recommend the references [2], [10], [9], and [28].

Let us first recall that two elements Ωγ1 and Ωγ2 of {Ωγ}γ∈I are said
to be isometrically congruent when there is an isometry ψ of Mn

f ×ρ
R that carries the image of x1 : ∂Ωγ1 ↪→ Mn

f ×ρ R onto the image of

x2 : ∂Ωγ2 ↪→ Mn
f ×ρ R (cf. Subsection 1.2 of [2]), where x1 and x2 are

the immersions of ∂Ωγ1 and ∂Ωγ2 into Mn
f ×ρR, respectively, i.e., if there

exists a diffeomorphism φ : ∂Ωγ1 → ∂Ωγ2 and an isometry ψ of Mn
f ×ρR

such that the following diagram commutes:

∂Ωγ1
x1 //

φ

��

Mn
f ×ρ R

ψ

��
∂Ωγ2 x2

// Mn
f ×ρ R .

Taking into account the studies reported in [9], γ̃ ∈ I is said to be a bifur-
cation instant for the family {Ωγ}γ∈I if there exists a sequence {γn}n∈N⊂
I and a sequence {Ωγn}n∈N ⊂ {Ωγ}γ∈I such that

(a) lim
n→∞

γn = γ̃,

(b) lim
n→∞

xn = x̃, where xn : Ωγn ↪→ Mn
f ×ρ R and x̃ : Ωγ̃ ↪→ Mn

f ×ρ R
are the immersions of Ωγn and Ωγ̃ into Mn

f ×ρR, respectively, and

(c) for all n ∈ N, xn is not isometrically congruent to x̃.
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Furthermore, according to the ideas set out in [10], if γ̃ ∈ I is not a
bifurcation instant, the family {Ωγ}γ∈I is said to be locally rigid at γ̃.

One of the classical criteria to determine when a instant γ̃ ∈ I is of
bifurcation is related with the so-called Morse index associated with the
variational problem in question (see, for instance, [2] and [9]). Following
this philosophy, we define the Morse index of Ωγ , which will be denoted

by Indf (Fλ(γ)
f ,Ωγ), as the dimension of the maximal subspace where the

second variation d2

ds2F
λ(γ)
f (0) of the weighted Jacobi functional Fλ(γ)

f is

negative definite. Equivalently, Indf (Fλ(γ)
f ,Ωγ) is the number of nega-

tive eigenvalues (counted with multiplicity) of the weighted Jacobi op-
erator Jf ;γ given in (3.21). With our notations, a real number µ̂(γ)
is an eigenvalue of Jf ;γ if and only if Jf ;γ(u) + µ̂(γ)u = 0 for some
function u ∈ C∞(∂Ωγ). Moreover, using the same arguments of Propo-

sition 2.7 of [2] we obtain that Indf (Fλ(γ)
f ,Ωγ) is finite on I ⊂ R. Intu-

itively, Indf (Fλ(γ)
f ,Ωγ) measures the number of independent directions

in which the Hf (γ)-hypersurface ∂Ωγ fails to minimize the weighted area
functional Af defined in (3.5).

Essentially, a variation of Indf (Fλ(γ)
f ,Ωγ) along the interval I ⊂ R

will indicate the existence of a bifurcation instant. More precisely, under
suitable Fredholmness assumptions (cf. [2] and [9]), we have that if there

are γ1, γ2 ∈ I with γ1 < γ2 such that the second variation d2

ds2F
λ(γj)
f (0)

of the weighted Jacobi functional Fλ(γj)
f is nonsingular (namely, the

eigenvalues of the weighted Jacobi operator Jf ;γj are nonzero) for j ∈
{1, 2}, and

(3.22) Indf (Fλ(γ1)
f ,Ωγ1) 6= Indf (Fλ(γ2)

f ,Ωγ2),

then {Ωγ}γ∈I admits a bifurcation instant at some γ∗ ∈ (γ1, γ2). On the
other hand, according to [10], using the Implicit Function Theorem we

obtain that if d2

ds2F
λ(γ̃)
f (0) is nonsingular for some γ̃ ∈ I, then the fam-

ily {Ωγ}γ∈I is locally rigid at γ̃. In particular, when Indf (Fλ(γ)
f ,Ωγ) = 0

for all γ ∈ I, {Ωγ}γ∈I does not have bifurcation instants.

Remark 6. We observe that the change in the Morse index of a family
of hypersurfaces given by condition (3.22) is not sufficient to guarantee
the bifurcation of the family {Ωγ}γ∈I . Indeed, considering the standard
context, the family of CMC spherical caps, starting with a pole and
terminating with the entire sphere has a change in the Morse index
from 0 to 1 at the hemisphere, but there is no bifurcation (for more
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details, see [4]). Hence, our assumption that d2

ds2F
λ(γj)
f (0) is nonsingular

for j ∈ {1, 2} is a necessary condition to reach at the bifurcation.

In this paper we will study the local rigidity and the bifurcation in-
stants of {Ωγ}γ∈I by analyzing the spectrum of Jf ;γ for all γ ∈ I. Essen-
tially, we will determine the number of negative eigenvalues for each γ
(counting its multiplicity) and we will study the evolution of such a
number.

4. Local rigidity and bifurcation instants in Mn
f ×ρ R

Our first result given in Theorem 1 provides some simple sufficient
conditions to get the local rigidity of the family {Ωγ}γ∈I of critical points
of the variational problem (VP-2) described in Subsection 3.2.

Proof of Theorem 1: Since Qf (γ) is constant, from (3.21) we have that
the eigenfunctions of the weighted Jacobi operator Jf ;γ will coincide
with the eigenfunctions of f -Laplacian ∆f ;γ . More specifically, if u is
an eigenfunction of ∆f ;γ associated with an eigenvalue µf (γ), then u is
eigenfunction of Jf ;γ with eigenvalue

µ̂f (γ) = µf (γ)−Qf (γ).

Moreover, by the spectral theorem we know that all the eigenvalues
of ∆f ;γ are given by a sequence {µjf (γ)}+∞j=0 satisfying

0 = µ0
f (γ) < µ1

f (γ) ≤ · · · ≤ µjf (γ) ≤ µj+1
f (γ) ≤ · · · ,

repeated according to their multiplicity, and

lim
j→+∞

µjf (γ) = +∞

(see, for instance, Section 1 of [30]). So, all the eigenvalues µ̂jf (γ) of Jf ;γ

have the following form

(4.1) µ̂jf (γ) = µjf (γ)−Qf (γ) for every j ∈ {0, 1, 2, . . . }.

So, from (1.1) and (4.1) we obtain

µ̂jf (γ) = µjf (γ)−Qf (γ) ≥ µ1
f (γ)−Qf (γ) > 0 for every j ∈ {0, 1, 2, . . . }.

Hence, the second variation d2

ds2F
λ(γ)
f (0) given in (3.20) is nonsingular for

all γ ∈ I and, therefore, the family {Ωγ}γ∈I is locally rigid at each γ ∈
I.

In Theorem 2 we obtain a criterion that guarantees the existence of
bifurcation instants of the family {Ωγ}γ∈I .
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Proof of Theorem 2: Initially, from (3.21) and (3.20) we note that the
condition about Qf (γ) and hypothesis (a) assure us that the second vari-

ation d2

ds2F
λ(γj)
f (0) of the weighted Jacobi functional Fλ(γj)

f is nonsingu-

lar for j ∈ {1, 2}. On the other hand, we observe that hypothesis (b)
assures us that the eigenvalue of the weighted Jacobi operator which
corresponds to j = j0 admits a change of the sign between γ1 and γ2.
Moreover, as the eigenvalues of the one-parameter family of weighted Ja-
cobi functionals are ordered, we can ensure that the number of negative
eigenvalues between γ1 and γ2 has changed. Therefore,

Indf (Fλ(γ1)
f ,Ωγ1) 6= Indf (Fλ(γ2)

f ,Ωγ2)

and the result follows.

When Mn is closed, the weighted Killing warped product Mn
f ×ρ

R naturally admits a family of open subsets that can be realized as
critical points of the weighted area functional Af defined in (3.5). To
visualize this, for t1, t2 ∈ R with t1 < t2, we consider the family of open
subsets {Ωγ}γ∈(t1,t2] given by

(4.2) Ωγ = Mn × (t1, γ), γ ∈ (t1, t2],

whose boundary ∂Ωγ of each Ωγ is formed by the disjoint union

∂Ωγ = Σn1 ∪ Σn2 (γ)

of a fixed set Σn1 = Mn × {t1} and other set Σn2 (γ) = Mn × {γ}. From
Remark 1 we have that each Σn2 (γ), γ ∈ (t1, t2], is an f -minimal to-
tally geodesic closed hypersurface. So, since the variations of ∂Ωτ only
affect Σn2 (γ), from Remarks 4 and 5 we conclude that each element of
the family Ωγ∈(t1,t2] is a critical point of Af . For these critical points,
noting that ∂t is the vector field on Mn

f ×ρR that determines the orienta-

tion of each Σn2 (γ), γ ∈ (t1, t2], we have that the second variation of the
weighted Jacobi functional F0

f = Af and the weighted Jacobi operator

on each ∂Ωγ , given by the expressions (3.20) and (3.21), are reduced to

d2

ds2
Af (0)(u) = −

∫
Σ2(γ)

u Jf ;γ(u) dσ

and

Jf ;γ(u) = ∆f ;γ(u)− 1

ρ
∆̃f (ρ)u

for any u ∈ C∞(Σn2 (γ)), respectively, where ∆f ;γ represents the f -Lapla-

cian on Σn2 (γ), ∆̃f is the f -Laplacian on Mn
f , ρ = |Y | > 0, and Y is the

Killing vector field that determines the foliation on Mn
f ×ρ R by totally

geodesic closed slices Mn×{t}, t ∈ R. In addition, if ρ is an eigenfunction
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of ∆̃f , with associated eigenvalue c, we have that Jf ;γ can be written
simply as

Jf ;γ = ∆f ;γ + c.

In this scenario, we observe that the arguments of the proofs of The-
orems 1 and 2 are valid, and even more, the statements can be refined
in the sense that we now ask as hypotheses a certain behavior of the

spectrum of the drift Laplacian ∆̃f of the closed manifold Mn
f .

Corollary 1. Let Mn be an n-dimensional closed Riemannian manifold
and, for t1, t2 ∈ R with t1 < t2, let Ωγ∈(t1,t2] be the family of open
subsets of the weighted Killing warped product Mn

f ×ρ R given by (4.2).

Let ∆̃f be the f -Laplacian on Mn
f . If ρ is an eigenfunction of ∆̃f (with

associated eigenvalue c) and the first nonzero eigenvalue µ1
f (γ) of the

f -Laplacian ∆f ;γ on Σ2(γ) = Mn × {γ}, γ ∈ (t1, t2], satisfies

µ1
f (γ) > c,

then {Ωγ}γ∈(t1,t2] is locally rigid at each γ ∈ (t1, t2].

Proof: Initially, it is immediate to note that the function Qf (γ) of The-
orem 1 reduces to the nonnegative constant c. Then, as in the steps of
the proof of Theorem 1, we make an analysis of the eigenvalues of Jf ;γ

that contribute to Indf (Af ,Ωγ) and the result follows.

Remark 7. Considering once more the behavior of the eigenvalues of the
f -Laplacian ∆f ;γ on an arbitrary closed weighted manifold Mn

f , from
Corollary 1 we obtain the following consequence: The family of open
subsets of the weighted product Mn

f ×R given by (4.2) is always locally

rigid at each γ ∈ (t1, t2].

Thinking similarly, from Theorem 2 we obtain the following result.

Corollary 2. Let Mn be an n-dimensional closed Riemannian manifold
and, for t1, t2 ∈ R with t1 < t2, let Ωγ∈(t1,t2] be the family of open subsets

of the weighted Killing warped product Mn
f ×ρR given by (4.2). Let ∆̃f be

the f -Laplacian on Mn
f . If ρ is an eigenfunction of ∆̃f (with associated

eigenvalue c) and if there are two values γ1, γ2 ∈ (t1, t2], with γ1 < γ2,

such that the eigenvalues µ̂jf (γ1) and µ̂jf (γ2) of the Jacobi operators Jf ;γ1

and Jf ;γ2 (respectively) satisfy

(a) µ̂jf (γ1) 6= 0 and µ̂jf (γ2) 6= 0 for all j ∈ {0, 1, 2, . . . }, and

(b) there exists j0 ∈ {0, 1, 2, . . . } such that (µ̂j0f (γ1))(µ̂j0f (γ2)) < 0,

then there exists a bifurcation instant γ∗ ∈ (γ1, γ2).
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5. Stability of Hf -hypersurfaces in Mn
f ×ρ R

It is important to remark that, for all calculations in Section 3, there is
no real dependence on the open set Ω ∈M but on the hypersurface ∂Ω.
In fact, in the literature it is more common to work in terms of hyper-
surfaces (for instance, see [5, 6] for the classical context, and [11, 22]
for the weighted context). In this scenario, M becomes the space of all
closed orientable hypersurfaces of Mn

f ×ρ R.
In this last section we study the notion of stability associated with

problem (VP-1) described in Section 3 for this new set M. We begin
this study by recalling that if x : Σn ↪→Mn

f ×ρ R is such a hypersurface,
then the weighted volume and weighted area associated with a variation
X : (−ε, ε)× Σn →Mn

f ×ρ R are given by

Vf : (−ε, ε)→ R

s 7→ Vf (s) = Volf (Σn × [0, s]) =

∫
Σn×[0,s]

X∗(dσ)

and
Af : (−ε, ε)→ R

s 7→ Af (s) = Areaf (Xs(Σ
n)) =

∫
Σn

dσs,

respectively. Furthermore, the variational problem of minimizing the
functional Af for all variations of x : Σn ↪→ Mn

f ×ρ R that preserve the
weighted volume Vf is addressed by the study of the weighted Jacobi
functional

Ff : (−ε, ε)→ R
s 7→ Ff (s) = Af (s) + nHVf (s),

where H is the constant defined in (3.8), and their respective critical
points are the closed Hf -hypersurfaces of Mn

f ×ρ R. For these critical
points, the stability of the corresponding variational problem is given by
the second variation

d2

ds2
Ff (0)(u) = −

∫
Σn

uJf (u) dσ,

where Jf : C∞(Σn) → C∞(Σn) is the weighted Jacobi operator given
in (3.14). The above discussion motivates the following notion of stability.

We say that a closed Hf -hypersurface x : Σn ↪→ Mn
f ×ρ R is f -stable

if
d2

ds2
Af (0) ≥ 0

for all weighted volume-preserving variations X : Σn×(−ε, ε)→Mn
f ×ρR

of x : Σn ↪→Mn
f ×ρ R.
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Remark 8. Let x : Σn ↪→ Mn
f ×ρ R be a closed Hf -hypersurface as de-

scribed in the last definition above. We consider the set

(5.1) G =

{
u ∈ C∞(Σn) :

∫
Σn

u dσ = 0

}
.

Just as in [5], we can establish the following criterion of f -stability: a

hypersurface x : Σn ↪→Mn
f ×ρR is f -stable if and only if d2

ds2Ff (0)(u) ≥ 0
for all u ∈ G.

In what follows, associated with a hypersurface x : Σn ↪→Mn
f ×ρR we

will consider a particular smooth function, namely, the angle function

(5.2)
Θ: Σn → R

p 7→ Θ(p) = 〈N(p), Y (p)〉,

where N is the normal vector field on Σn that determines its orientation
and Y is the Killing vector field on Mn

f ×ρ R. In this setting, we get
the following key lemma, which provides sufficient conditions to obtain
a eigenfunction of the drift Laplacian ∆f on Σn. Let us denote by ∇, ∇,

and ∇̃ the Levi–Civita connections of Mn
f ×ρR, Σn and Mn, respectively.

Proposition 3. Let x : Σn ↪→Mn
f ×ρR be a hypersurface immersed into

weighted Killing warped product Mn
f ×ρR. If Θ ∈ C∞(Σ) is the function

defined in (5.2), then

∆fΘ +

{
R̃icf (N∗, N∗)− 1

ρ
H̃essρ(N∗, N∗)−Θ2 ∆̃f (ρ)

ρ3
+ |A|2

}
Θ

= −nY >(Hf ),

where we are using the same notations of Proposition 2. In addition, if
Σn is closed and both Hf and

µ = R̃icf (N∗, N∗)− 1

ρ
H̃essρ(N∗, N∗)−Θ2 ∆̃f (ρ)

ρ3
+ |A|2

are constants, then µ is an eigenvalue of ∆f on Σn with eigenfunction Θ.

Proof: Firstly, from (2.3) we note that

−nY >(H) =− Y >(nHf − 〈∇f,N〉)

=− nY >(Hf ) + Y >〈∇f,N〉

=− nY >(Hf ) + Hess f(Y,N)

−ΘHess f(N,N)− 〈AY >,∇f〉.

(5.3)
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Moreover, with a straightforward computation we can show that

∇Θ = −AY > − (∇NY )>

and, since f is invariant along the flow determined by Y , we get

〈∇Θ,∇f〉 = −〈AY > + (∇NY )>,∇f〉

= −〈AY >,∇f〉 − 〈∇NY,∇f〉

= −〈AY >,∇f〉+ 〈Y,∇N∇f〉

= −〈AY >,∇f〉+ Hess f(Y,N).

(5.4)

Taking into account equations (5.3) and (5.4) we get

(5.5) − nY >(H) = −nY >(Hf )−ΘHess f(N,N) + 〈∇Θ,∇f〉.

On the other hand, from Proposition 2.12 of [6] we have

(5.6) ∆Θ = −nY >(H)−Θ(Ric(N,N) + |A|2).

Therefore, from (2.2), (2.4), (3.18), (5.6), and (5.5) we obtain the
result.

Our stability result stated in Theorem 3 gives us a characterization
of f -stable Hf -hypersurfaces in Mn

f ×ρ R through the first eigenvalue
of the drift Laplacian ∆f , which extends a classic result of Barbosa, do
Carmo, and Eschenburg (see Proposition 2.13 of [6]).

Proof of Theorem 3: Since µ is constant, Proposition 3 guarantees that
µ is in the spectrum of the drift Laplacian ∆f . So, let µ1 be the first
eigenvalue of ∆f on Σn. If µ = µ1, then the variational characterization
of λ1 (see, for instance, Section 1 of [7]) gives

µ = min
u∈G\{0}

−
∫

Σn

u∆f (u) dσ∫
Σn

u2 dσ

,

where G is defined in (5.1). Then, from (3.13) and (3.14) we obtain

d2

ds2
Ff (0)(u) =

∫
Σn

{−u∆f (u)− µu2} dσ ≥ (µ− µ)

∫
Σn

u2 dσ = 0,

for any u ∈ G and, according to Remark 8, x : Σn ↪→Mn
f ×ρR is f -stable.

Now suppose that x : Σn ↪→ Mn
f ×ρ R is f -stable, which according

to Remark 8 is equivalent to d2

ds2Ff (0)(u) ≥ 0 for all u ∈ G. Let u
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be an eigenfunction associated to the first eigenvalue µ1 of the drift
Laplacian ∆f on Σn. Consequently, by (3.13) and (3.14) we get

0 ≤ d2

ds2
Ff (0)(u) = (µ1 − µ)

∫
Σn

u2 dσ.

Therefore, since µ1 ≤ µ, we must have µ1 = µ.
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