10 research outputs found

    Modeling of the Concentrations of Ultrafine Particles in the Plumes of Ships in the Vicinity of Major Harbors

    Get PDF
    Marine traffic in harbors can be responsible for significant atmospheric concentrations of ultrafine particles (UFPs), which have widely recognized negative effects on human health. It is therefore essential to model and measure the time evolution of the number size distributions and chemical composition of UFPs in ship exhaust to assess the resulting exposure in the vicinity of shipping routes. In this study, a sequential modelling chain was developed and applied, in combination with the data measured and collected in major harbor areas in the cities of Helsinki and Turku in Finland, during winter and summer in 2010-2011. The models described ship emissions, atmospheric dispersion, and aerosol dynamics, complemented with a time-microenvironment-activity model to estimate the short-term UFP exposure. We estimated the dilution ratio during the initial fast expansion of the exhaust plume to be approximately equal to eight. This dispersion regime resulted in a fully formed nucleation mode (denoted as Nuc(2)). Different selected modelling assumptions about the chemical composition of Nuc(2) did not have an effect on the formation of nucleation mode particles. Aerosol model simulations of the dispersing ship plume also revealed a partially formed nucleation mode (Nuc(1); peaking at 1.5 nm), consisting of freshly nucleated sulfate particles and condensed organics that were produced within the first few seconds. However, subsequent growth of the new particles was limited, due to efficient scavenging by the larger particles originating from the ship exhaust. The transport of UFPs downwind of the ship track increased the hourly mean UFP concentrations in the neighboring residential areas by a factor of two or more up to a distance of 3600 m, compared with the corresponding UFP concentrations in the urban background. The substantially increased UFP concentrations due to ship traffic significantly affected the daily mean exposures in residential areas located in the vicinity of the harbors.Peer reviewe

    The UrbEm Hybrid Method to Derive High-Resolution Emissions for City-Scale Air Quality Modeling

    No full text
    As cities are growing in size and complexity, the estimation of air pollution exposure requires a detailed spatial representation of air pollution levels, rather than homogenous fields, provided by global- or regional-scale models. A critical input for city-scale modeling is a timely and spatially resolved emission inventory. Bottom–up approaches to create urban-scale emission inventories can be a demanding and time-consuming task, whereas local emission rates derived from a top–down approach may lack accuracy. In the frame of this study, the UrbEm approach of downscaling gridded emission inventories is developed, investing upon existing, open access, and credible emission data sources. As a proof-of-concept, the regional anthropogenic emissions by Copernicus Atmospheric Monitoring Service (CAMS) are handled with a top–down approach, creating an added-value product of anthropogenic emissions of trace gases and particulate matter for any city (or area) of Europe, at the desired spatial resolution down to 1 km. The disaggregation is based on contemporary proxies for the European area (e.g., Global Human Settlement population data, Urban Atlas 2012, Corine, OpenStreetMap data). The UrbEm approach is realized as a fully automated software tool to produce a detailed mapping of industrial (point), (road-) transport (line), and residential/agricultural/other (area) emission sources. Line sources are of particular value for air quality studies at the urban scale, as they enable explicit treatment of line sources by models capturing among others the street canyon effect and offer an overall better representation of the critical road transport sector. The UrbEm approach is an efficient solution for such studies and constitutes a fully credible option in case high-resolution emission inventories do not exist for a city (or area) of interest. The validity of UrbEm is examined through the evaluation of high-resolution air pollution predictions over Athens and Hamburg against in situ measurements. In addition to a better spatial representation of emission sources and especially hotspots, the air quality modeling results show that UrbEm outputs, when compared to a uniform spatial disaggregation, have an impact on NO2 predictions up to 70% for urban regions with complex topographies, which corresponds to a big improvement of model accuracy (FAC2 > 0.5), especially at the source-impacted sites

    Integrating Modes of Transport in a Dynamic Modelling Approach to Evaluate Population Exposure to Ambient NO2 and PM2.5 Pollution in Urban Areas

    No full text
    To evaluate the effectiveness of alternative policies and measures to reduce air pollution effects on urban citizen’s health, population exposure assessments are needed. Due to road traffic emissions being a major source of emissions and exposure in European cities, it is necessary to account for differentiated transport environments in population dynamics for exposure studies. In this study, we applied a modelling system to evaluate population exposure in the urban area of Hamburg in 2016. The modeling system consists of an urban-scale chemistry transport model to account for ambient air pollutant concentrations and a dynamic time-microenvironment-activity (TMA) approach, which accounts for population dynamics in different environments as well as for infiltration of outdoor to indoor air pollution. We integrated different modes of transport in the TMA approach to improve population exposure assessments in transport environments. The newly developed approach reports 12% more total exposure to NO2 and 19% more to PM2.5 compared with exposure estimates based on residential addresses. During the time people spend in different transport environments, the in-car environment contributes with 40% and 33% to the annual sum of exposure to NO2 and PM2.5, in the walking environment with 26% and 30%, in the cycling environment with 15% and 17% and other environments (buses, subway, suburban, and regional trains) with less than 10% respectively. The relative contribution of road traffic emissions to population exposure is highest in the in-car environment (57% for NO2 and 15% for PM2.5). Results for population-weighted exposure revealed exposure to PM2.5 concentrations above the WHO AQG limit value in the cycling environment. Uncertainties for the exposure contributions arising from emissions and infiltration from outdoor to indoor pollutant concentrations range from −12% to +7% for NO2 and PM2.5. The developed “dynamic transport approach” is integrated in a computationally efficient exposure model, which is generally applicable in European urban areas. The presented methodology is promoted for use in urban mobility planning, e.g., to investigate on policy-driven changes in modal split and their combined effect on emissions, population activity and population exposure

    Localizing SDG 11.6.2 via Earth Observation, Modelling Applications, and Harmonised City Definitions: Policy Implications on Addressing Air Pollution

    No full text
    While Earth observation (EO) increasingly provides a multitude of solutions to address environmental issues and sustainability from the city to global scale, their operational integration into the Sustainable Development Goals (SDG) framework is still falling behind. Within this framework, SDG Indicator 11.6.2 asks countries to report the “annual mean levels of fine particulate matter (PM2.5) in cities (population-weighted)”. The official United Nations (UN) methodology entails aggregation into a single, national level value derived from regulatory air quality monitoring networks, which are non-existent or sparse in many countries. EO, including, but not limited to remote sensing, brings forth novel monitoring methods to estimate SDG Indicator 11.6.2 alongside more traditional ones, and allows for comparability and scalability in the face of varying city definitions and monitoring capacities which impact the validity and usefulness of such an indicator. Pursuing a more harmonised global approach, the H2020 SMURBS/ERA-PLANET project provides two EO-driven approaches to deliver the indicator on a more granular level across Europe. The first approach provides both city and national values for SDG Indicator 11.6.2 through exploiting the Copernicus Atmospheric Monitoring Service reanalysis data (0.1° resolution and incorporating in situ and remote sensing data) for PM2.5 values. The SDG Indicator 11.6.2 values are calculated using two objective city definitions—“functional urban area” and “urban centre”—that follow the UN sanctioned Degree of Urbanization concept, and then compared with official indicator values. In the second approach, a high-resolution city-scale chemical transport model ingests satellite-derived data and calculates SDG Indicator 11.6.2 at intra-urban scales. Both novel approaches to calculating SDG Indicator 11.6.2 using EO enable exploration of air pollution hotspots that drive the indicator as well as actual population exposure within cities, which can influence funding allocation and intervention implementation. The approaches are introduced, and their results frame a discussion around interesting policy implications, all with the aim to help move the dial beyond solely reporting on SDGs to designing the pathways to achieve the overarching targets

    Modeling of the Concentrations of Ultrafine Particles in the Plumes of Ships in the Vicinity of Major Harbors

    No full text
    Marine traffic in harbors can be responsible for significant atmospheric concentrations of ultrafine particles (UFPs), which have widely recognized negative effects on human health. It is therefore essential to model and measure the time evolution of the number size distributions and chemical composition of UFPs in ship exhaust to assess the resulting exposure in the vicinity of shipping routes. In this study, a sequential modelling chain was developed and applied, in combination with the data measured and collected in major harbor areas in the cities of Helsinki and Turku in Finland, during winter and summer in 2010–2011. The models described ship emissions, atmospheric dispersion, and aerosol dynamics, complemented with a time–microenvironment–activity model to estimate the short-term UFP exposure. We estimated the dilution ratio during the initial fast expansion of the exhaust plume to be approximately equal to eight. This dispersion regime resulted in a fully formed nucleation mode (denoted as Nuc2). Different selected modelling assumptions about the chemical composition of Nuc2 did not have an effect on the formation of nucleation mode particles. Aerosol model simulations of the dispersing ship plume also revealed a partially formed nucleation mode (Nuc1; peaking at 1.5 nm), consisting of freshly nucleated sulfate particles and condensed organics that were produced within the first few seconds. However, subsequent growth of the new particles was limited, due to efficient scavenging by the larger particles originating from the ship exhaust. The transport of UFPs downwind of the ship track increased the hourly mean UFP concentrations in the neighboring residential areas by a factor of two or more up to a distance of 3600 m, compared with the corresponding UFP concentrations in the urban background. The substantially increased UFP concentrations due to ship traffic significantly affected the daily mean exposures in residential areas located in the vicinity of the harbors

    Modeling of the Concentrations of Ultrafine Particles in the Plumes of Ships in the Vicinity of Major Harbors

    No full text
    Marine traffic in harbors can be responsible for significant atmospheric concentrations of ultrafine particles (UFPs), which have widely recognized negative effects on human health. It is therefore essential to model and measure the time evolution of the number size distributions and chemical composition of UFPs in ship exhaust to assess the resulting exposure in the vicinity of shipping routes. In this study, a sequential modelling chain was developed and applied, in combination with the data measured and collected in major harbor areas in the cities of Helsinki and Turku in Finland, during winter and summer in 2010–2011. The models described ship emissions, atmospheric dispersion, and aerosol dynamics, complemented with a time–microenvironment–activity model to estimate the short-term UFP exposure. We estimated the dilution ratio during the initial fast expansion of the exhaust plume to be approximately equal to eight. This dispersion regime resulted in a fully formed nucleation mode (denoted as Nuc2). Different selected modelling assumptions about the chemical composition of Nuc2 did not have an effect on the formation of nucleation mode particles. Aerosol model simulations of the dispersing ship plume also revealed a partially formed nucleation mode (Nuc1; peaking at 1.5 nm), consisting of freshly nucleated sulfate particles and condensed organics that were produced within the first few seconds. However, subsequent growth of the new particles was limited, due to efficient scavenging by the larger particles originating from the ship exhaust. The transport of UFPs downwind of the ship track increased the hourly mean UFP concentrations in the neighboring residential areas by a factor of two or more up to a distance of 3600 m, compared with the corresponding UFP concentrations in the urban background. The substantially increased UFP concentrations due to ship traffic significantly affected the daily mean exposures in residential areas located in the vicinity of the harbors

    Assessing the effects of significant activity changes on urban-scale air quality across three European cities

    No full text
    This study investigates the effects of significant activity changes on air pollutant concentrations across the three European cities Hamburg, Liège, and Marseille and focuses on the effects of COVID-19 lockdown measures as a case study for such significant activity changes. To identify such effects, this study utilizes urban-scale chemistry transport modeling, embedded in regional-scale Chemistry Transport simulations. The outcomes underscore the significance of considering local conditions and emissions sources, as variations between urban and regional simulations demonstrate. Notably, lockdown regulations yield the most substantial impact in Marseille due to its dense road traffic and port area, with Liège following suit, primarily influenced by regional air quality alterations. Conversely, Hamburg exhibits lower mean changes, attributed to its widespread urban structure. Analysis of modeled exceedances of limit values reveals significant reductions, particularly in areas of urban and road land use. These findings contribute valuable insights into the efficacy of significant activity changes, such as lockdown measures, in mitigating air pollution, underlining the importance of tailored strategies for emission reduction in urban environments

    Measurement and Modeling of Ship-Related Ultrafine Particles and Secondary Organic Aerosols in a Mediterranean Port City

    No full text
    Maritime transport emerges as a major source of ultrafine particle (UFP) pollution in coastal regions with consequences for the health of people living in port cities. Inhalation of UFPs can cause inflammation and oxidative stress, which are starting points for further diseases. In addition to primary particles, secondary organic aerosol (SOA) may form through the photo-oxidation of volatile organic compounds emitted in ship exhaust. The characterization of size-segregated and chemical properties of particles is essential for assessing the health implications related to shipping. We applied a coupled regional–local chemistry transport modeling system to study the effects of ship emissions on atmospheric concentrations of UFP and SOA in the Mediterranean port city Marseille (France), which is characterized by the combination of high port activity, industrialized emissions, and active photochemistry in summer. Our results show that the average potential impact from local shipping in the port area was 6–9% for SOA and 27–51% for total particle number concentration in July 2020. The estimated oxidative potential of daily mean particulate organic matter related to shipping was lower than the oxidative potential reported for heavy fuel oil (HFO). The lower oxidative potential in this study is very likely due to the low share of ships using HFO during stopover

    Measurement and Modeling of Ship-Related Ultrafine Particles and Secondary Organic Aerosols in a Mediterranean Port City

    No full text
    International audienceMaritime transport emerges as a major source of ultrafine particle (UFP) pollution in coastal regions with consequences for the health of people living in port cities. Inhalation of UFPs can cause inflammation and oxidative stress, which are starting points for further diseases. In addition to primary particles, secondary organic aerosol (SOA) may form through the photo-oxidation of volatile organic compounds emitted in ship exhaust. The characterization of size-segregated and chemical properties of particles is essential for assessing the health implications related to shipping. We applied a coupled regional-local chemistry transport modeling system to study the effects of ship emissions on atmospheric concentrations of UFP and SOA in the Mediterranean port city Marseille (France), which is characterized by the combination of high port activity, industrialized emissions, and active photochemistry in summer. Our results show that the average potential impact from local shipping in the port area was 6-9% for SOA and 27-51% for total particle number concentration in July 2020. The estimated oxidative potential of daily mean particulate organic matter related to shipping was lower than the oxidative potential reported for heavy fuel oil (HFO). The lower oxidative potential in this study is very likely due to the low share of ships using HFO during stopover
    corecore