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Abstract: Marine traffic in harbors can be responsible for significant atmospheric concentrations
of ultrafine particles (UFPs), which have widely recognized negative effects on human health. It
is therefore essential to model and measure the time evolution of the number size distributions
and chemical composition of UFPs in ship exhaust to assess the resulting exposure in the vicinity
of shipping routes. In this study, a sequential modelling chain was developed and applied, in
combination with the data measured and collected in major harbor areas in the cities of Helsinki and
Turku in Finland, during winter and summer in 2010–2011. The models described ship emissions,
atmospheric dispersion, and aerosol dynamics, complemented with a time–microenvironment–activity
model to estimate the short-term UFP exposure. We estimated the dilution ratio during the initial fast
expansion of the exhaust plume to be approximately equal to eight. This dispersion regime resulted
in a fully formed nucleation mode (denoted as Nuc2). Different selected modelling assumptions
about the chemical composition of Nuc2 did not have an effect on the formation of nucleation mode
particles. Aerosol model simulations of the dispersing ship plume also revealed a partially formed
nucleation mode (Nuc1; peaking at 1.5 nm), consisting of freshly nucleated sulfate particles and
condensed organics that were produced within the first few seconds. However, subsequent growth
of the new particles was limited, due to efficient scavenging by the larger particles originating from
the ship exhaust. The transport of UFPs downwind of the ship track increased the hourly mean
UFP concentrations in the neighboring residential areas by a factor of two or more up to a distance
of 3600 m, compared with the corresponding UFP concentrations in the urban background. The
substantially increased UFP concentrations due to ship traffic significantly affected the daily mean
exposures in residential areas located in the vicinity of the harbors.

Keywords: shipping emissions; ultrafine particles; fuel sulfur content; aerosol dynamics modeling;
atmospheric nucleation; particle number concentration; air quality; population exposure

1. Introduction

Large ships are primarily powered by diesel propulsion systems fueled by heavy fuel oil (HFO) [1].
HFO is la ow-grade fuel, also known as bunker oil or residual oil, which usually has a fuel sulfur
content (FSC) of over 0.5% and includes a high concentration of impurities, such as ash, asphaltenes,
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and metals [2,3]. Sulphur oxides (SOX) emitted from ship engines form sulfate (SO4) aerosols in the
atmosphere that increase human health risks and contribute to the acidification in terrestrial and
aquatic environments [4]. It has been estimated that ship emissions contribute between 5% and 20%
of ambient non-sea-salt sulfate concentrations and 5% to 30% of sulfur dioxide (SO2) concentrations
in coastal regions [5]. SO4 constitutes a large proportion of ship-related particulate matter (PM). The
most important health effect associated with PM exposure is premature mortality [6]. Specifically,
increases in concentrations of PM2.5, i.e., particles with aerodynamic diameter of 2.5 µm (2.5 × 10−6 m)
or less, have been linked to increases in cardiopulmonary and lung cancer mortalities in exposed
populations [7]. PM emissions from ship traffic are responsible for approximately 60,000 premature
deaths globally [8]. According to Sofiev et al. [9], the worldwide use of cleaner marine fuels with a
lower content of sulfur will strongly reduce the ship-related premature mortality and morbidity by
34% and 54%, respectively.

High concentrations of ultrafine particles (UFPs), defined as particles having mobility diameter
(Dp) less than 100 nm (1.0 × 10−7 m), have been measured in marine ports in Europe [10–13]. Due
to their small size, UFP can penetrate deeper in the respiratory tract than larger particles. Physical
characteristics related to UFP size, such as a high deposition efficiency and high active surface, together
with their chemical composition imply that the health effects of UFP might be independent from those
of larger particles, such as PM2.5 [14,15]. UFP are not well recognized by the human immune system,
cleared less efficiently in the lung than larger particles, have high biological reactivity, and can reach
the bloodstream [14,16]. By crossing through the alveolar–blood barrier, UFP may interact with the
vascular endothelium, causing local oxidative stress with resultant acute cardiovascular events [17].
The blood circulation translocates ultrafine particles from the lungs to other critical organs, such as
the heart, liver, kidneys, and brain, where they can induce localized effects [18]. However, the few
epidemiological studies that have been carried out to investigate the effect of UFP on mortality revealed
inconsistent results, one reason being that the current exposure assessment techniques are not well
suited to describe the long-term exposure to UFPs [19].

Modeling of regional and urban air quality showed that the influence of shipping and harbors
was relevant on particle number concentrations for Helsinki, Oslo, Rotterdam, and Athens [20]. Ship
engine exhaust aerosol is composed of ultrafine combustion particles consisting of soot and volatile
material [21,22]. Due to different particle formation mechanisms and characteristics, the number
size distributions of fresh exhaust particles from marine diesel engines consist of distinctive particle
modes. Particle size number distributions from ship emissions are defined by a nucleation mode of
particles smaller than 25 nm and an accumulation mode of particles in the size range 25−1000 nm,
with only a minor fraction of particles above 250 nm [21,23–25]. Although the boundary between the
two modes can vary [26], we adopted this definition of the nucleation mode in our study. Moldanová
et al. [27] measured the emission factors of particle numbers from a four-stroke engine fueled with
HFO and marine gas oil (MGO) in the range 5 × 1015–1 × 1017 (kg fuel)−1, depending on the engine
load. The number concentration was dominated by UFPs, and ca. 2/3 of the particles were non-volatile.
Nucleation mode particles in the ship exhaust are presumably volatile and composed of sulfuric acid
water clusters [21].

This study focuses on nucleation mode particles that can be emitted either (i) directly from the
ship’s engine or (ii) formed via atmospheric nucleation in the ship’s plume. During combustion, fuel
sulfur is oxidized to SO2 and further to sulfur trioxide, SO3 [12]. The amount of SO3 depends on the
combustion temperature. The oxidation of SO2 to SO3 in the cylinder of the ship engine is dominated
by gas phase reactions while the vanadium catalyzed reaction is a very minor pathway [28]. After the
release at the exit of the ship stack, in the dilution and cooling of the exhaust, SO3 reacts with water
vapor, forming sulfuric acid (H2SO4), which can subsequently homogeneously nucleate to form new
particles and/or condense onto pre-existing particles. As a consequence, SOX emitted from ships can be
involved in new particle formation (NPF) in coastal cities [29]. Ship exhaust also contains low volatile
organic compounds that can contribute both to the nucleation processes and to the subsequent particle
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growth [30]. NFP events occur frequently in coastal areas because the mixing of clean marine air and
polluted urban air gives rise to favorable conditions for particle formation, often characterized by high
solar radiation, and periods of land–sea breeze transitions [31].

A previous study by Tian et al. [32] presented a model system that simulated the transformation
of fresh ship emissions during atmospheric ageing of plumes for several hours. The applied stochastic
Lagrangian particle-resolved aerosol model was able to capture the aerosol dynamics during plume
evolution. However, they did not consider the fast interactions between particle dynamics and dilution
on the shorter time scales in the early phase of the plume dispersion. In addition, their model yielded
higher particle number concentrations below the diameter of 40 nm, compared to aircraft observations
of ship plumes that had aged for one hour.

To overcome the limitations with respect to the modelling of nucleation mode particles in the
early phase of plume dispersion, we present a new framework for the simulation of the particle size
distributions on the scales between the exit of the ship stack and the immediate surroundings of ships
in the vicinity of harbors. The novel aspects of our model framework include: (1) The use of real world
data of ship positions, ship emissions partially based on measured data, measured meteorological
data, and measured air pollutant concentrations; (2) allowing for the plume rise of the ship emissions;
(3) coupling of gas-phase chemistry with aerosol dynamics; and (4) simultaneous modelling of particle
number distributions and their chemical compositions.

The present study is a part of the SNOOP (Shipping-Induced NOX and SOX Emissions-Operational
Monitoring Network) project, which aims to find out how ship exhaust emissions affect the marine
environment and human health in harbor areas. Measurement campaigns have previously been carried
out within the harbor area in the city center of Helsinki (Finland) and along the shipping route in
the city of Turku (Finland) in 2010–2011, during winter and summer conditions [11]. The specific
objectives of this work are: (i) To trace the evolution of the particle size distribution in the exhaust
plumes of passenger ships between the point of release (exit of the ship stack) and the urban area, and
(ii) to estimate the exposure to ultrafine particles attributed to shipping in such regions of the harbor
cities that are most affected by the ship plumes.

2. Materials and Methods

A sequential processing chain was developed in this study consisting of the 3-D chemistry transport
model EPISODE-CityChem [33], the multicomponent aerosol dynamic model MAFOR [34,35], and
a time–microenvironment–activity model, to assess the short-term population exposure to ultrafine
particles originated from ship exhausts. The dilution of aerosol particles along the ship plume centerline
was calculated using the output of the EPISODE-CityChem model in a circular grid of modeled receptor
concentrations. The aerosol dynamics model uses the obtained dilution parameters to compute the
particle number and mass distributions as a function of the distance from the ship stack along the
centerline of the ship plume, which corresponds to the time-averaged wind direction of a Gaussian
plume. The conceptual outline of the applied methodology is presented in Figure 1.

A drawback of the used approach is that the spatial and temporal heterogeneity of particle
concentrations within the ship exhaust plume cannot be represented, because the sub-grid Gaussian
dispersion models embedded in the chemistry transport model do not resolve turbulence-induced
variations in the concentration fields and have limitations in resolving fine-scale flow structures. Due
to the non-linear relationship of particle transformation rates and concentrations, this could cause the
aerosol model to either over- or underpredict the rate of aerosol processes in the unstable boundary
layer. Nevertheless, the overall model chain allows for a treatment of the aerosol processes in the
plume that is consistent with the dispersion of the ship plume exhaust. A clear advantage of the
adopted approach is that the uncertainty of the entire model chain is largely minimized through the
parameterization with real world observations.

The simulation time of the full model chain for one ship event was approximately 1 h. Simulations
were performed on a Linux workstation; Dell Precision T3610 (Intel® Xeon (R) CPU E5-2637 v3 at 3.50
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GHz with 64 GB of RAM) (Dell Inc., Round Rock, TX, USA). The computational times were 26 min
for EPISODE-CityChem (1-h simulation), 3.2 min for MAFOR (1-h simulation), and 27 min for the
exposure model (1-day simulation).

Figure 1. Outline of the sequential processing chain developed in this study. The brown and blue
colors refer to the various input datasets and their initial processing, and the atmospheric dispersion
and transformation modeling, respectively. The modeling of the aerosol processes and the exposure
modeling together with the final product are presented with green and grey colors.

2.1. Measurements in the Ship Plume

The measurements of ship emissions were performed in two different harbor environments in
Finland: At the harbors in the Helsinki downtown area, and along the shipping channel in the city of
Turku (Figure S1, Supplementary Materials). The Viking Line ships operate daily between Helsinki
and Stockholm, and Helsinki and Tallinn from the Katajanokka terminal (sites H1 and H2 in Figure S1).
The Tallink Silja Line ships operate daily from the Olympic terminal (site H4) between Helsinki and
Stockholm. Furthermore, ships of Tallink Silja Line and Viking Line operate daily between Turku and
Stockholm departing from Turku Harbor. All of these ships are passenger ships but they also provide
roll-on roll-off service (ROPAX ships) and many cars and trucks travel on them. Technical details of the
engines, after-treatment systems, etc. are reported in Pirjola et al. [12]. The wintertime campaigns were
conducted in Helsinki on 18–29 January 2010 and 7 January–25 February 2011, and in Turku on 2–28
February 2010 and 7–17 February 2011. The summertime campaigns were performed on 26 July–6
August 2010 and 25 July–15 September 2011 in Helsinki, and on 9–19 August 2010 and 1–10 August
2011 in Turku.

Monitoring of the ship plumes was conducted with a mobile laboratory van, “Sniffer” [12]. Sniffer
was parked at the measurement sites (H1, H2, and H4 in Helsinki, and T2, T4, T6, T7, and T8 in Turku),
facing the ship plume. The sampling occurred at a 2.4-m height from the ground level, above the
van’s wind shield. The particle number concentration and size distribution of 7 nm–10 mm particles
were measured with an ELPI (Electrical Low Pressure Impactor, Dekati Ltd., Kangasala, Finland)
equipped with a filter stage and an additional stage designed to enhance the particle size resolution
for UFP [36–38]. Gaseous concentrations, such as carbon dioxide (CO2), carbon monoxide (CO),
nitrogen oxide (NOX), and SO2, were also measured; however, in this study, we used only the NOX

data monitored by an APNA 360CE analyzer (Horiba) to evaluate the modeled dilution curves. A
weather station on the roof of the van at a height of 2.9 m above ground level provided measurements
of the temperature and relative humidity as well as wind speed and direction, and a global positioning
system archived the van’s location. All data were monitored at a 1-s time resolution. All instruments
were zero-checked and synchronized before the start of the measurements. The NOX analyzer was
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calibrated in the NO measurement range 0−2000 ppb, and the used span gases were 0, 200, and 805
ppb of NO. More details can be found in Pirjola et al. [12]. The uncertainty of the measurement results
by the ELPI has been estimated to be some tens of percent [39], and the accuracy of the ELPI roughly
25% [40,41]. The uncertainty of the measurement results by the NOX analyzer is approximately 10%.

Ship events in this study were defined as the time periods of ship arrival or ship departure in the
harbor when the ship plume could be detected by the instruments of Sniffer. The time periods and the
average meteorological conditions for the events in Helsinki and Turku are listed in Table 1. In this
study, the Viking Line ships operating in Helsinki are called A and D, and those operating in Turku I
and J as in Pirjola et al. [12]. Consistently, the Tallink Silja Line ships operating in Turku are called H,
and Tallink ships B and K in Helsinki and Turku, respectively.

Table 1. Information on the ship events in Helsinki and Turku. Selected average meteorological
conditions (air temperature TA, relative humidity RH, wind speed U, wind direction WD) are presented
during the ship events. The direction of the ship on the route is indicated by: arr. = arrival;
dep. = departure.

Event Measurement Site
and Ship Direction Start Time End Time TA (K) RH (%) U (m s−1) WD (◦)

A_20110111 H2, dep. 11:25:00 11:55:00 271 90 4.3 289
A_20110912 H1, dep. 11:30:00 11:47:00 290 73 6.3 130
A_20110913 H2, dep. 11:20:00 11:45:00 290 82 4.8 213
B_20100803 H7, dep. 18:30:00 18:40:00 292 80 5.4 145
D_20110111 H2, dep. 17:30:00 17:50:00 274 81 5.1 232
D_20110908 H2, dep. 17:25:00 17:50:00 289 78 2.0 187
H_20100811 T8, dep. 08:40:00 08:50:00 292 71 5.5 249
H_20100817 T2, dep. 08:30:00 08:40:00 289 69 3.5 173
I_20100812 T2, arr. 19:18:00 19:35:00 295 61 3.0 233
I_20110207 T7, arr. 19:20:00 19:30:00 272 94 3.6 250
J_20100811 T7, dep. 09:00:00 09:10:00 292 72 4.6 219
J_20100817 T4, dep. 09:00:00 09:10:00 290 65 5.7 47
J_20110217 T2, arr. 07:00:00 07:25:00 258 79 2.4 175
K_20110802 T6, arr. 20:00:00 20:30:00 293 49 0.8 34

2.2. Ship Emissions

The Ship Traffic Emission Assessment Model (STEAM) [42–44] was used to obtain ship emission
data during the ship events in the harbor area. The movement of ships during arrival or departure
was tracked by the Automatic Identification System (AIS) data. Ship engine data together with
load-dependent emission factors and fuel consumption was used to calculate ship emission data
approximately every 10 s during passage of the ship from/to the harbor (within a distance of ca. 4 km).

Major challenges for port emission inventories are the uncertainties of the emissions from the
auxiliary engines (AEs) and the boiler fuel consumption. STEAM determines the propulsion engine
power as a function of speed and makes certain assumptions about the power profiles of maneuvering
ships and ships at berth. The electricity need of each vessel was based on the operation mode, vessel
type, and its cargo space description. For vessels carrying passengers, AE power need was linked to
passenger capacity as described in our earlier work [43,44]. Regardless, significant uncertainty may
be involved in the evaluation of AE and boiler usage because these are usually linked to vessel size
without considering primary consumers of electricity onboard.

Data on the ship exhaust characteristics were based on measurements on-board a large ROPAX
vessel equipped with a Selective Catalytic Reduction (SCR) system, carried out by the Kymenlaakso
University of Applied Sciences during the 2010 campaign. Identical respective values for the exhaust
gas temperature and exit velocity were applied to all ships in the dispersion modeling. Table S1,
Supplementary Materials, lists the relevant stack parameters, exhaust parameters, and ship geometry.

We applied the emission factors for particle numbers measured by Moldanová et al. [27] for a
main engine (ME) burning HFO with FSC = 1 wt % at a 30% engine load (S1_HFO1%_ME-low in [27]).
We further assumed that NOX is emitted as 90% NO and 10% NO2, based on the recommendation of
CIMAC [45]. Furthermore, we assumed that almost all SOX from ships were emitted as SO2, i.e., sulfur
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in the fuel was oxidized to SO2, and only 1% was directly released in the form of SO3, corresponding to
the lower limit of the reported conversion rates (1%−3%) for low sulfur fuels [46]. In addition, we did a
sensitivity test using a higher SOX-to-SO3 conversion rate. The average ship emission of NOX, SOX, and
total particle number (PN) for ships’ events in Helsinki is given in Table S2, Supplementary Materials.

2.3. Setup of a 3-D Chemistry Transport Model

The urban-scale chemistry-transport model EPISODE-CityChem [33] was applied to determine
the dispersion of the ship plume during the events. In order to resolve pollutant dispersion in the
proximity of point sources and lines sources, EPISODE-CityChem combines a 3-D Eulerian grid model
with sub-grid Gaussian dispersion models, allowing computation of pollutant concentrations near
pollution sources with a high spatial resolution. The advection/-diffusion equation in the Eulerian grid
model component for the time-dependent concentration of a chemical species i is given by:

∂ci/∂t = −(∂(uci)/∂x + ∂(vci)/∂y + ∂(wci)/∂z)
+ ∂/∂x(K(H) ∂ci/∂x) + ∂/∂y(K(H) ∂ci/∂y)

+ ∂/∂z(K(z) ∂ci/∂z) + Ri(c1, . . . ,cN) - Si(x,y,z,t),
(1)

where ci is the mass concentration; u, v, and w are the three wind components of the wind vector;
K(H) and K(z) are the horizontal and vertical eddy diffusivities, respectively; Ri represents the source
terms; and Si represents the sink terms. The terms describing the turbulent diffusion are represented
according to mixing length theory (K-theory). The wind velocity field applied in Equation (1) is
required to be mass consistent, which is approximated by demanding the wind flow to be divergence
free. The mixing length representation of the turbulence terms is valid within this approximation.

The numerical solution employs operator splitting to solve the atmospheric processes on
the Eulerian grid: Advection, diffusion, chemical reaction, and deposition. More details on the
employed solutions and discretization schemes for the operators are reported by Karl et al. [33] and
Hamer et al. [47]. The numerical model time step of the EPISODE-CityChem model is calculated
dynamically based on the critical time steps associated with the solution of the horizontal advection,
vertical advection, and diffusion processes. The typical model time step in the current model
configuration was ~20 s, with horizontal advection in the y-direction being the most critical operator.
All operations were performed at an even number of times so that every other operator sequence may
be a mirror in the opposite direction of the first sequence to reduce time-splitting errors.

The ship emission data for each 10-s ship position during the ship passage was averaged over
1-min intervals. From the 1-min averages, the ship position at the time when Sniffer recorded the
peak concentration of the ship plume was selected as a single point source for the dispersion study.
The heat release from ship exhaust stacks represents an additional buoyancy flux that may result in
plume rise close to the source. Plume rise of the ship exhaust due to momentum and buoyancy is
calculated in the model using the algorithm of Briggs [48,49], which considers different boundary
layer (BL) stability conditions characterized by the inverse Monin–Obukhov length (LO

−1). For
situations where the exhaust gas temperature exceeds the air temperature, buoyancy is assumed to be
dominant. Buoyancy-driven plume rise will affect the final plume height in different ways depending
on the BL stability conditions, and therefore the algorithm considers different parameterizations for
either unstable and neutral conditions, or stable conditions. The effects of stack downwash and the
building-induced disturbances of the flow due to the ship’s building geometry further modify the
plume rise. A review of several plume rise studies [50] suggested that plume rise is overestimated
by the Briggs equations. In contrast, a comparison by Karl et al. [51] revealed that the implemented
scheme gives a lower final plume rise from an elevated points source than two simpler plume rise
schemes for all tested atmospheric stability conditions.

The emission height is offset by the final plume rise, giving the effective emission height, Heff,
where the plume is injected into the corresponding vertical layer of the Eulerian grid. Subsequently, the
Gaussian-segmented plume model SEGPLU treats the emission as a temporal sequence of instantaneous
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releases of a specified pollutant mass. The finite length plume segments are emitted at discrete time
intervals, ∆T, given by ∆T = 3600 (s)/2n, where n is an integer value dependent on the meteorological
conditions and becomes larger as the wind speed increases. It has been shown that the heat flux at the
ship stack has little impact on the in-plume temperature, because it drops quickly to the background
air temperature within the first second after release [52]. Therefore, we neglected the impact of the
exhaust heat on the plume temperature.

The 3-D simulations of plume dispersion were performed with EPISODE-CityChem on a 15 × 15
km2 domain using a 200-m horizontal resolution and 13 vertical layers, where the four lowest layers
had a depth of 10 m. For estimating the error of the spatial discretization, a grid resolution test was
performed using three levels of grid refinement (cell sizes: 500, 300, 200, and 100 m). The level of grid
convergence was evaluated using the grid convergence index (GCI). The GCI provides an estimate
of the amount of discretization error in the finest grid solution relative to the converged numerical
solution [53], and is defined by:

GCI21 = Fs · (e21/(r21
p
−1), (2)

where Fs is a safety factor (set to 1.25) multiplying the relative error term; e21 is the relative error
between the two finest grids; p is the order of convergence; and r is the grid refinement ratio. The
grid refinement test showed that the converged numerical solution for pollutant concentrations on the
Eulerian grid has an error band of GCI21 = 6%, with a 95% confidence level. A reduction of the cell size
below 300 m does not change the simulation results substantially.

The model produces output only once every hour; the computed plume dispersion should
therefore be considered to be an average steady state. Figure 2 illustrates the shape of the simulated
ship plume in the 3-D model for ship event J_20100811.

Figure 2. Example numerical results of the simulated ship plume dispersion of ship event J_20100811
using the EPISODE-CityChem model. Larger panel: the shape of the 3-D ship plume within a subset of
the model grid. Inserted smaller panel in the upper-left-hand corner: the view of the same ship plume
as seen upwards from below the ground surface. Colored contours at the surface indicate the modeled
hourly mean concentration of NOX (µg·m−3) in the ship plume. Blue lines illustrate the Eulerian 3-D
model grid structure.
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Meteorological data for Helsinki and Turku was used to parameterize the simulations. Hourly
meteorological data for the two domains was estimated using the meteorological preprocessor
MPP-FMI [54]. MPP-FMI estimates for the Helsinki domain are based on meteorological measurements
at Vantaa airport (60.3267N; 24.95675E) and the weather mast Harmaja (60.10512N; 24.97539E).
MPP-FMI estimates for the Turku domain were derived from measurements at met stations Artukainen
(60.45439N; 22.1787E) and Rajakari (60.37788N; 22.0964E). The diagnostic model MCWIND [47] was
used to calculate divergence-free hourly 3-D wind flow fields based on wind data from two sites. The
influence of the moving ship (shear-driven mixing) on the ground wind-flow field was neglected.

Background air concentrations of ozone (O3), NO, NO2, and PN at the domain borders were based
on Sniffer measurements before the respective ship event. The photostationary approximation (PSSA)
of the NO2-NO-O3 reaction cycle was activated. A circular receptor grid (divided into 15◦ sectors) with
Sniffer in the center was used to sample NOX during the simulation at locations near the ship passage.

2.4. Aerosol Dynamics Model

Since EPISODE-CityChem currently does not consider aerosol dynamics processes, we applied
the aerosol dynamics model MAFOR version 1.9 [34,35], which is able to produce the mass and
composition size distributions of a multicomponent aerosol along an air parcel trajectory. MAFOR is a
sectional aerosol model that includes gas-phase chemistry; formation of thermodynamically stable
clusters by different nucleation mechanisms; condensation of H2SO4, water (H2O), and various organic
vapors onto particles, considering molecular dimensions; Brownian coagulation; and mixing with
background air. The time evolution of the particle number and mass concentration distribution is
solved using the fixed sectional method. The fixed sectional method is computationally efficient and
advantageous when treating continuous nucleation, which is important for the modelling of new
particle formation. Numerical diffusion in the treatment of condensation/evaporation is negligible due
to the use of a high number of size sections (i.e., 120).

The analytical predictor of condensation scheme [55] was employed to calculate the mass transfer
of gas molecules to particles and a semi-implicit solution was applied to coagulation. The discrete
equations describing the change of the particle number concentration with time were solved with
forward finite differences. More details on the numerical methods can be found in Karl et al. [34]. The
composition of particles in any size bin can change with time due to multicomponent condensation
and/or due to coagulation of particles. MAFOR uses a time step of 0.1 s for the calculation of aerosol
dynamics, which is sufficiently small, when compared to the typical time scales in the range 0.5−4 s for
dilution in exhaust plumes [56].

In this study, the numerical simulations included two low-volatility organic vapors represented
by the n-alkanes C22H46 and C28H58 and one extremely low-volatility vapor represented by C34H70 (a
constituent of the lubrication oil). The vapor pressure of n-alkanes as a function of the temperature
was adopted from [57]. In addition, the vapor pressure of the n-alkanes is modified by their molar
fraction in the particle phase, according to Raoult’s law, and by their molar volume and surface tension
according to the Kelvin effect. We chose classical binary homogeneous H2SO4-H2O nucleation (BHN)
as the nucleation mechanism in accordance with earlier studies in urban pollution plumes [58]. The
BHN parameterization [59,60] used in this study is suitable for predicting the particle formation rate
at high temperatures in exhaust conditions by extending the applicable temperature range to 400 K.
The kinetic pre-processor KPP v2.2.3 (Virginia Polytechnic Institute and State University, Blacksburg,
VA, USA) [61] is used to transform the chemical equations into program code for the gas-phase
chemistry solver. The differential equation system of gas-phase reactions is solved with Rosenbrock 3
using automatic time step control. Simulations with MAFOR were initialized with the particle size
distributions and mass fractions reported for fresh exhaust at a low engine load (see Section 2.2; [27]).

We selected ship event A_20110912 as a reference to normalize the initial particle size distribution,
because A_20110912 is closest to the ship exhaust measurements by [27] in terms of engine type, power,
and engine load. Ship plume simulations with MAFOR started one second after release from the ship
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stack’s exit. In total, we simulated 900 s (15 min) to follow the evolution of the aerosol until the particle
concentrations nearly reached the background levels.

The chemical composition of the size-fractionated particles in background air was taken from
the LIPIKA study in Helsinki [62]. The chemical composition of ship exhaust particles (estimated
based on [27]) and of the background particles is presented in Tables S3 and S4 (Supplementary
Materials), respectively. The nucleation mode of the exhaust size distribution (Nuc2) was composed of
liquid H2SO4 and primary organic matter with a mass ratio of 20:80. Sensitivity tests were performed
regarding the participation of organic substances in the nucleation process as well as regarding the
mass composition of the exhaust nucleation mode.

2.5. Population Exposure

We estimated the short-term population exposure to ultrafine particles in ship plume peaks in
Helsinki and Turku. Population exposure estimates can be used in epidemiological studies to evaluate
the health risks associated with outdoor air pollution. Population exposures are generally defined
as the pollutant concentration values in environments where people spend their time, taking into
account the amount of time they spend within such environments. In dynamic approaches to exposure
estimations, the population activity data is used to account for the diurnal variation in population
numbers in different locations of the urban area. Therefore, we used a time–microenvironment–activity
model [63] to assess the time-variant exposure of the population in a microenvironment (ME). A
microenvironment is defined as the location or area with a relatively uniform pollutant concentration,
such as the home or the workplace.

In the present study, the focus is on the indoor environments, because we are interested in the
exposure in residential areas close to the harbor (MEhome). Thus, to account for the infiltration of
outdoor air pollution into the indoor environments, we applied infiltration factors [63,64]. Infiltration
factors (Finf) for different pollutant species and different indoor environments are mostly derived from
measurements and defined as:

Finf = Cai/Ca, (3)

where Cai is the indoor air concentration of species a originating from ambient air, and Ca is the
outdoor air concentration of species a. The infiltration factor, Finf, can then be considered specifically
for each microenvironment in the calculation of population exposure. Population exposure can also be
interpreted as a weighted sum of concentrations, in which the weights are equal to the time spent in
each microenvironment, and therefore be written as:

Ei =
∑

j Finf,j ·
∑

t Ci,t × Pi,j,t, (4)

where Ei is the total exposure in all microenvironments of area i, Finf,j is the infiltration factor for a
microenvironment j, Ci,t is the pollutant concentration in area i at time t, and Pi,j,t is the number of
people in the area attributed to the microenvironment at a given time. The infiltration factor, Finf,
for UFP in home environments in Helsinki and Turku was set to a value of 0.56, which is a mean of
the infiltration factors for UFPs from different experimental studies in the urban residential indoor
environments of cities in Northern Europe as compiled in a review by Chen and Zhao [65].

Besides the applied microenvironment-based approach, more sophisticated methods for the
simulation of building infiltration based on computational fluid dynamics (CFD) models have been
published recently [66–68], surpassing the need to assume well-mixed pollutant concentrations
within the microenvironments. CFD modeling can take into account complex building structures,
ventilation parameters, wind pressures acting on the exterior of the building, and buoyancy effects
induced by the different indoor and outdoor air temperatures. Nevertheless, we decided to apply a
microenvironment-based approach to model indoor exposure due to the high computational costs
associated with CFD simulations of a large computational domain, and the lack of specific data in
terms of building structure and ventilation parameters.
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In this study, the time activity data for the Helsinki metropolitan area in four microenvironments
(home, workplace, traffic, and other activities) were adopted from a previous exposure model study [64].
The static population data in Helsinki and Turku was set up as a grid of inhabitants per 100 × 100 m2,
based on population density data from population statistics in the Urban Atlas 2012 dataset [69].

3. Results and Discussion

3.1. Dilution Curves between Ship Stack and Ambient

Modeling studies of ship exhaust effects have to deal with the emission process, from the ship
funnel to background air via in-plume chemistry and aerosol dynamics and background/plume
mixing processes. Those entrainment processes impact in-plume transformation beyond the simple
exchange/dilution effects due to the highly nonlinear reaction rates of gases and coagulation rates of
particles. Previous studies on the dispersion and transformation of aerosol particles in ship exhaust
plumes are scarce [32]. Stuart et al. [70] explored the plume dispersion of ships specially designed for
the emission of sea-salt particles employed in marine cloud brightening geoengineering. They used a
multi-shelled Gaussian plume model including size-resolved coagulation and found that both plume
expansion and coagulation affect the number concentrations of sea-salt particles that were emitted as a
single lognormal mode.

We assumed a two-stage dilution process for the dispersion of the ship plume. In the initial high
dispersion regime, the freshly released exhaust undergoes fast cooling and the initial plume volume,
determined by the stack diameter, expands quickly. This initial expansion ends at the time of 1 s after
plume release when the plume cross-section has typically reached a horizontal and vertical extent of 10
and 5.5 m, respectively [71]. The initial stage is followed by a steady-state dilution regime that occurs
at a characteristic dilution time scale mainly controlled by the atmospheric turbulence.

3.1.1. First Stage Dilution

We describe the first stage dilution by the jet plume model developed by Vignati et al. [72] for
vehicle exhaust plumes, which takes into account both atmospheric turbulence and the entrainment of
fresh air due to the jet effect of the exhaust gas. The cross-sectional area of the plume is [72]:

S(t) = ((S0)
1
2 + t·σw(0))2

−(t·αVS)2, (5)

where S0 is the cross-sectional areas of the ship funnel and VS is the exhaust gas velocity. The
entrainment velocity, σw, is given by:

Σw
2(t) = (αU)2 + σwt

2 + (αujet(t))2, (6)

where U is the mean wind speed during the event, σwt is the traffic-generated turbulence, ujet is the
plume jet velocity, which we set equal to VS, and α is a proportionality constant that relates wind speed
to mechanically created turbulence, here set to 0.1. The traffic-generated turbulence can be ignored for
the ship events. Following [71], we assumed that the first dilution stage ends after 1 s. The dilution
ratio, DR, between stack emission and the point where atmospheric dilution starts to dominate, is then:

DR = S(1s)/S0. (7)

Using Equations (1) and (2), we find DR to be ~8 for all ship events. The temperature in the initial
plume, TP, changes approximately as [73]:

TP−TA = 1/DR·(TE−TA), (8)
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where TE and TA are the exhaust and ambient air temperatures, respectively. For an ambient
temperature of 280 K and TE = 580 K, the plume temperature is ca. 318 K after the end of the initial
dilution stage.

The coagulation of particles will compete with the dispersion in the expanding plume. We used
the parameterization presented in [70] to calculate the fraction of particles remaining after the initial
dilution stage due to coagulation in the super-linearly expanding plume. For details, see Appendix A.
The fraction remaining was in the range 0.77−0.93 for most ship events. It was close to 0.5 for ship events
with weak wind. Compared to dilution, which results in a fraction remaining of 0.125, coagulation is
considered a minor competing process. Neglecting coagulation during the initial dilution stage causes
an error of 10% to 15% in the current approach.

3.1.2. Second-Stage Dilution

The second-stage dilution is mainly dependent on atmospheric turbulence [73]. We used a simple
horizontal dilution parameterization, following a single-term power series, y(x) = a x−b [10,30], to fit
the modeled concentrations in the ship plume, where x (in m) is the downwind distance from the ship
stack. In this simple dilution model, parameter a represents the initial concentration at the stack and
parameter b describes how rapidly the concentration in the plume declines. The model data on NOX

concentrations at the time of the ship event was extracted from the output of the circular receptor
grid (embedded in the simulation with EPISODE-CityChem) along the visually determined plume
centerline. For the dilution curves, concentration data was ordered by increasing distance from the
point of maximum concentration near the ground level, Cmax.

The procedure is illustrated in Figure 3a. Fits to the decaying NOX concentrations, evaluated
using the EPISODE-CityChem model, were used for determining the dilution parameters since NOX

can be regarded as an inert tracer for which dilution is the only relevant process in the atmosphere.
The power-law fit for the example of J_20100811 is shown in Figure 3b while dilution curves for the
other events are given in Figure S2 in the Supplementary Materials. Relevant parameters for the ship
plume dispersion and results for the empirical dilution curves (a,b) as determined for Helsinki and
Turku are listed in Table S5 in the Supplementary Materials. For NOX dilution, parameter b was in the
range of 0.99 to 1.47, with an average of 1.26. There was no clear relation between parameter b and the
prevailing stability conditions; however, values were higher than the average in unstable conditions
and lower than the average during very stable conditions.

3.2. Aerosol Dynamics Modeling

MAFOR was applied as a one-dimensional model with downwind distance from the ship stack
as the spatial coordinate. The dispersion of particles in the ship plumes was approximated with the
simplified treatment of the dilution of particles detailed in Section 3.1.2. The model follows an air
parcel in time along the centerline of the ship plume, which corresponds to the time-averaged wind
direction of a Gaussian plume. An actual plume may have higher and lower concentration regions,
and because of the quadratic relationship of the coagulation rate with particle concentrations this could
cause the aerosol model to under predict coagulation in unstable conditions. The particle evolution
beginning at time t0, i.e., after the end of the first-stage dilution (i.e., at the time of 1 s), is simulated
with MAFOR. In addition to nucleation, condensation, and coagulation of particles, dry deposition of
particles, and gas-phase chemistry within the plume, the model treats the mixing of the air parcel with
gases (NO, NO2, SO2, and O3) and particles from the background air. During the first dilution stage,
the in-plume temperature is expected to drop to a value close to the ambient air temperature. The
initial temperature of the simulations was thus set to the average air temperature of the event. The
equations that govern the time evolution of the particle size distribution in terms of the numbers and
mass (of the respective aerosol components) are given in [33] (Equations (16)−(20) therein). In this
study, the time evolution was modified by a term that considers the change of the particle number
concentration, Ni, in each size section i by dilution with background particles.
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Figure 3. Dilution of the ground concentrations of NOX near the ground level in the ship plume for
ship event J_20100811. (a) In the upper panel, the circular receptor grid (shown as white circles filled
with the color corresponding to the range of concentrations) was used to extract concentration data for
the modeled dilution curve. The concentrations were evaluated along a visually determined plume
centerline, with increasing distance from the maximum concentration at the ground level to the urban
background concentration (shown by the black arrow). The lower panel shows the elevation map of
the Turku domain. (b) Power-law fit (green line) to the modeled concentrations at receptors (blue
dots) in the plume, together with the measured peak 1-min averaged concentration at Sniffer (red dot).
Background concentrations were subtracted from the NOX concentration data.

3.2.1. Model Treatment of Dilution

To model the dilution process, we assumed a circular cross-section of the plume. The
time-dependent plume height, HP, was calculated as:

HP(t) = (HP,0
2 + (a’·(10−3

·Ut)b)2)
1
2 , (9)

where HP,0 is the initial plume height, corresponding to the height of the plume after the first dilution
stage, here set to a value of 5.5 m [71]. The dilution parameter, b, is derived from the power-law fit
to the empirical dilution curves. Parameter a’ relates to the vertical dispersion parameter, σz, of the
Gaussian plume as a function of x (which is represented here in the form of the empirically determined
power-law expression, σz = a’·xb) and depends on the atmospheric stability and the averaging time.
The values of a’ are 110.62, 86.49, and 61.14 for unstable, neutral, and stable conditions, respectively [74].
The change of Ni (cm−3) due to dilution with background air is then:

dNi/dt|dilution = −(b/t)·(Ni−NBG,i), (10)

where NBG,i is the number concentration of background particles in the same size section. It was
further assumed that the air parcel is not further influenced by emissions during its travel.

3.2.2. Evolution of the Particle Size Distribution

The evolution of the exhaust particle size distribution as a function of time was computed with
the aerosol model, following the air parcel with increasing distance downwind of the ship stack. The
initial concentrations of gases in the plume were obtained by dividing the 1-min averaged emission
rate (given in Table S3, Supplementary Materials) with the volume flow and multiplying the calculated
stack concentration by the dilution ratio. PN concentrations in the diluted exhaust, at the beginning of
the simulation, were in the range 106–107 cm−3. High numbers of nucleation mode (Nuc2) particles
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(peaking at 5−6 nm) were present in the diluted exhaust, with a mean concentration of 3.2 ± 1.0 × 106

cm−3 (±1 SD), making up a fraction of 29% of the total particles.
Initial concentrations of condensable vapors were estimated, based on the emission rate of SOX, to

be in the range 0.1−0.5 × 1011 cm−3, 0.7−3.2 × 1011 cm−3, 0.7−3.2 × 1011 cm−3, and 1.2−5.4 × 1011 cm−3

for H2SO4, C22H46, C28H58, and C34H70, respectively. Background concentrations of gases and particles
were based on 1-min averaged measurements at Sniffer, immediately before the ship passage. Modeled
size distributions were compared against the measured size distribution at Sniffer for the time when a
peak in the signal of the ELPI instrument was detected that related to the ship passage (measured peak
concentration). The time of the peak relative to t0 (start time of the simulation) is referred to as t1 in
the following. Typically, the peak concentrations of PN varied in the range 104–106 cm−3, when the
ships passed Sniffer at the 200–800 m distance [12]. The initial modeled size distribution was obtained
from a fit to the diluted exhaust size distribution (Figure 4, blue squares and line) and the modeled
background size distribution from a fit to the measured background size distribution (Figure 4, red
diamonds and line).

Figure 4. Comparison of the modeled particle size distributions at peak time t1 with the particle size
distributions recorded at Sniffer; (a) Helsinki ship event A_20110912; (b) Turku ship event J_20100811.
The solid and dashed blue and black lines show the particle size distributions after the initial dilution
and at the time t1, respectively. Both events are from the summertime field campaigns. The individual
measurements recorded at Sniffer are shown as black stars. Modeled size distribution after a distance
of 30 m downwind is indicated as a dashed magenta line. The urban background concentrations are
shown as solid and dashed red lines.

The temporal evolution of the gas-phase concentrations in the first 15 min of the ship plume
is shown in Figure S3, Supplementary Materials. While primary emitted gases, NO, NO2, and SO2,
are diluted to levels in the background air within a few minutes after plume release, background O3

quickly entrains the plume, leading to an increase of the concentration of O3 in the plume, initially
from 10 µg m−3 to close to 60 µg m−3. In daytime ship events, hydroxyl (OH) radical concentrations
forming via photolysis of O3 reach levels in the range 1−5 × 106 cm−3. The addition of water molecules
to the co-emitted SO3 causes fast formation of H2SO4 in the first seconds of the simulation. However,
the initial peak of H2SO4 quickly drops to ambient levels; it is followed by in-plume photochemical
formation of H2SO4 through oxidation of SO2 by OH radicals. Maximum H2SO4 concentration after
the first minute ranges between 1−2 × 108 cm−3 in the ship plume.

Fresh diesel exhaust particle number size distributions often exhibit a distinct bimodal character, with
the corresponding particle types referred to as the nucleation mode and accumulation mode [26,75,76].
The nucleation mode may form in the cooling dilution by homogeneous and heterogeneous nucleation or
consist of nonvolatile core particles that formed already in the engine cylinders [75,77–79]. The particle
number size distribution of the ship exhaust (blue squares in Figure 3) has an additional peak (with a mean
diameter at ~40 nm) between the nucleation mode (Nuc2, peaking at 5−6 nm) and the accumulation mode.
In the simulation of the exhaust, a new nucleation mode (Nuc1; peaking at 1.5 nm) consisting of freshly
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nucleated particles forms rapidly in the size range <3 nm diameter (Figure 4). Nucleation via BHN starts
immediately due to the high SO3 and H2SO4 concentrations present in the cooled exhaust. Initial fast
nucleation also happens in nighttime events, because no oxidation step is required for conversion of SO3 to
H2SO4. Within the first 10 s, at a distance corresponding to 30 m downwind, dilution reduces the particle
concentrations by about one order of magnitude. The agreement of the modeled and measured particle
size distribution at peak time t1 was satisfactory for most ship events, with a tendency to underestimate
the measured particle numbers in the size range 70−120 nm in diameter. The comparison between the
modeled and measured PN concentrations at peak time t1 for all ship events showed that MAFOR was
able to predict the number concentration of particles with Dp > 10 nm within ±50% in most ship events
(Table S6, Supplementary Materials). Deviations between the modeled and measured PN concentrations
are mainly due to the inaccuracies of the derived dilution rates.

3.2.3. Summer–Winter Differences

Important summer–winter differences are evident in the evolution of the particle size distributions
as a function of time, shown as sequential size distribution plots in Figure 5. Stagnant atmospheric
conditions in winter ship events (here: J_20110217) led to much slower dilution of the exhaust particles
than in the summer ship events (here: J_20100811), with prevailing unstable conditions. Lower
temperatures in the winter events favor the condensation of H2SO4 to particles. Despite the absence of
photochemical formation of sulfuric acid in the dark winter, the growth of fresh Nuc1 mode particles is
much stronger than during the summer event, which had much higher photochemical activity. The
growth rate of nucleated particles in the summer event was only 2.0 nm h−1 compared to 4.9 nm h−1 in
the winter event. The enhanced Nuc1 growth in winter is partly due to slower dilution of exhaust
particles and partly due to higher condensation rates.

Figure 5. Modelled sequential particle size distributions in the ship plume from 1 s after release from
the ship stack up to 15 min downwind (left-hand side panels) and up to 5 min downwind (right-hand
side panels). Upper panels: (a) J_20100811 in summer, up to 15 min downwind; (b) J_20100811 in
summer, up to 5 min downwind; lower panels: (c) J_20110217 in winter, up to 15 min downwind; (d)
J_20110217 in winter, up to 5 min downwind. Vertical dashed line indicates the time at which the
highest measured concentrations were recorded at Sniffer (t1).
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3.2.4. Sensitivity Tests on Nucleation and Chemical Composition

We simulated several sensitivity cases to test the assumptions regarding the composition of the
exhaust gases and particles and the applied nucleation mechanism:

1. SOX-to-SO3 conversion rate of 2% (case “2XSO3”);
2. Start temperature of 310 K in the plume (case “T310K”);
3. Nucleation involving organic vapor (details in Appendix B; case “NUHET”); and
4. Nuc2 mode composed of 100% liquid H2SO4 (case “HSULF”).

The sensitivity results for the number concentrations of nucleation mode particles (NP; Dp < 25 nm)
and ultrafine particles with Dp > 25 nm, total PN, Nuc1 mode diameter, and chemical composition of
nucleation mode particles are shown in Figure S4, Supplementary Materials. Doubling the SOX-to-SO3

conversion rate (case 2XSO3) increases the NP number concentration by 62% after 30 s of travel time.
Case T310K shows a similar increase, explained by the BHN parameterization being effective at higher
temperatures [60], which gives higher nucleation rates under humid/high sulfuric acid conditions in
the temperature range 290−310 K than the low-temperature BHN parameterization [59]. Nucleation
between sulfuric acid and organic vapor (case NUHET) gave a slightly higher NP number concentration
(by 5%) than nucleation via BHN.

Case HSULF tests the assumption that Nuc2 is a volatile nucleation mode that formed in the
dilution and cooling of the exhaust. The chemical composition of NP is not sensitive to the assumed
composition of Nuc2 because the production of extremely low-volatility organic matter (ELV-OM) that
occurs in the first second of the simulation overwhelms the contribution of the primary nucleation
mode constituents. After 1 s, NP particles are mainly composed of ELV-OM (65% and 67% of the wet
particle mass in the base run and HSULF, respectively) and the mass fraction of nonvolatile primary
organic matter (NV-POM) that remained is only 6%. Between 1 and 300 s, NP become increasingly
hygroscopic due to condensation of H2SO4, with an increase of attached water mass from 10% up to
21% in the base run (24% in HSULF).

The total dry mass of NP decreases from 33 to 1.1 µg·m−3 within 30 s due to dilution and the loss
to larger particles by coagulation. Further, following the mass size distribution in the base run with
increasing travel time (Figure S5, Supplementary Materials) shows that the primary organic particles of
the Nuc2 mode disappeared after 120 s. The mass fraction of nonvolatile particles (soot and NV-POM)
in UFP in terms of mass remains almost constant at ~50% in the first minutes of the plume travel
(Table 2). This is higher than that reported from measurements performed in ship plumes in the port
of Gothenburg (24% on average) [80]. We note that the measurement study [80] used unit density to
translate from the number to mass, hence assuming a higher density for nonvolatile particles would
give a higher nonvolatile fraction. The discrepancy emphasizes the need for size-resolved chemical
characterization of UFP in the fresh exhaust from ships.

Differences in the chemical composition of UFPs might be relevant for their associated health
impact. Nucleation mode particles will grow increasingly hygroscopic during atmospheric transport.
The composition change might be relevant for human health. Water-insoluble particles related to fresh
emissions have been associated with high oxidative potential. The oxidative potential is the capacity
of particulate matter to carry out or catalyze the formation of reactive oxygen species (ROS) within
human lung cells [81–84]. Studies have linked ROS formed on the surface of soot, such as quinones
from oxidation of polycyclic aromatic hydrocarbons by ozone, to increased oxidative potential (e.g.,
Shiraiwa et al. [85]).
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Table 2. Simulated chemical composition of ultrafine particles (dry weight) in the plume after
different travel times. Mass concentration (µg·m−3) in top part and mass fraction in bottom part.
Components: Soot (corresponding to elemental carbon), ELV-OM—extreme low-volatility organic
matter, SV-OM—semivolatile organic matter, NV-POM—nonvolatile primary organic matter.

Travel Time (s) Soot ELV-OM Sulfate SV-OM NV-POM

1 41.6 55.6 19.2 8.30 37.8
30 2.46 2.84 1.15 0.57 2.20
120 0.66 0.70 0.33 0.17 0.57
300 0.29 0.28 0.17 0.09 0.23

Travel Time (s) Mass Fraction (Dry Weight)

1 0.26 0.34 0.12 0.05 0.23
30 0.27 0.31 0.12 0.06 0.24
120 0.27 0.29 0.14 0.07 0.23
300 0.27 0.26 0.16 0.08 0.23

Zhang et al. [86] suggested that exposure to pollutants with high oxidative potential, such as
traffic-related pollutants, ultrafine particles, and transition metals, may lead to increased airway
oxidative stress and inflammation in elderly adults. Zou et al. [87] observed different cytotoxicity
mechanisms of water-soluble and insoluble urban PM2.5 at longer exposure times, indicating that
solubility should be taken into consideration when evaluating the toxicity of PM2.5. McWhinney et
al. [88] found that the soot particle surfaces in diesel exhaust contributed the most to the oxidative
potential while the contribution of the water-soluble fraction was small. However, it remains to be
determined whether the water-soluble and insoluble oxidative potential in the ultrafine particulate
matter are linked to differing health end points [89].

3.3. Short-Term Population Exposure to Cruise Ship Arrivals/Departures

Short-term population exposure to ship-related UFP in distances up to 3600 m downwind from the
ship were calculated based on time-dependent concentrations from MAFOR simulations. To this end,
a simple plume representing the ship-impacted area was constructed. Modeled UFP concentrations
during a specific ship event in winter (A_20110111 in Helsinki; J_20110217 in Turku) were averaged
into 40-m intervals and inserted into circle segments covering a sector of 15◦ on each side of the plume
centerline (concentric circles centered on the ship position at t1). Daily mean UFP concentrations
were derived based on cruise ship arrivals and departures in Helsinki Katajanokka terminal and in
Turku Harbor during the day, assuming the presence of the ship plume during five minutes (based
on measured NOX signals at Sniffer) and background concentration during the remaining time. We
note that inserting the plume centerline concentration uniformly in the lateral plume cross-section
overestimates the concentrations and exposures in the outer part of the plume. Figure 6 shows the
daily ship-related exposures in MEhome within the ship-impacted area. In Helsinki, daily ship-related
exposure is highest in the residential area near the harbor, exceeding the exposure to background
UFP by 320%. In Turku, the effect of the ship plume is smaller because densely populated areas are
located at a 2.5 km distance from the ship route. Therefore, maximum ship-related exposure exceeds
the exposure to background UFP by only 25%. About 650 and 220 persons in Helsinki and Turku,
respectively, are living in areas with the highest ship-related population exposures.

The epidemiological evidence is still scarce for the mortality risks of UFP. A multicity study
in Central Europe reported positive but not statistically significant associations between prolonged
exposures to UFP and respiratory mortality [19]. In contrast to this, a health risk analysis by Breitner
et al. [90] conducted in Beijing, China reported a strong association between ultrafine particles and
daily cardiovascular mortality with excess risk by 4% per UFP increase of 6250 cm−3 in 2-day lagged
exposures. Based on the reported strong association in [90], we calculated an excess mortality risk of 15%
and 8% for residents that are the most exposed to ship-related UFP in Helsinki and Turku, respectively,
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which is a factor of 4.5 and 2.2 higher than for residents exposed to typical urban background UFP
concentrations in Helsinki (5400 cm−3 [91]).

Figure 6. Predicted daily population exposure (cm−3 x number of people) in Helsinki and Turku in the
microenvironment home during winter: (a) Helsinki (based on event A_20110111); (b) Turku (based
on event J_20110217). Outline indicates the impact area of the ship; green dot marks ship location;
yellow dot marks Sniffer location. The results include the estimated exposure from ships, assuming no
other emission sources; we also assumed a constant wind direction and a constant urban background
UFP concentration.

4. Conclusions

High concentrations of ultrafine particles have previously been measured in the vicinity of several
marine ports in Europe. These concentrations can affect the health of harbor workers and residents
living in areas in proximity to the harbors. This paper presented a sequential chain of models, which
was used to simulate the temporal evolution of ultrafine particles. We addressed particulate matter
originating from the exhaust plumes of ships that arrived or departed from major harbors in Finland in
2010−2011. The modeled dispersion and transformation of particles depends on meteorology, chemical
transformation, and aerosol processes. The modeled size distributions in this study were in acceptable
agreement with the measured size distributions, at distances of up to several hundred meters from the
ship. We draw the following conclusions:

1. We evaluated that the dilution ratio (DR) was approximately eight (confidence interval: 7 to 10)
after the initial fast expansion of the exhaust plume. The estimated dilution ratio was smaller
than the DR range 10−40, which has been previously reported for ocean-going vessels [52,71] for
a plume age of 1 s in the marine boundary layer.

2. The initial cooling and expansion lead to a fully formed nucleation mode (Nuc2, peaking at 5−6
nm). The exhaust size distribution [27] that we used as a starting point of the modeling presumably
already includes the ceased initial nucleation of the fresh exhaust. On-road measurements showed
that the nucleation mode in vehicle exhaust was already present under 0.7 s of residence time in
ambient air [92]. The formation of new particles in fresh diesel exhaust by nucleation of H2SO4

(and organic substances) might even occur during the first milliseconds after release [26].
3. The modeling showed that a partially formed nucleation mode (Nuc1; peaking at 1.5 nm)

consisting of freshly nucleated sulfate particles and condensed organics was formed within the
first few seconds after the initial stage, irrespective of the applied nucleation mechanism (BHN or
HET).

4. The Baltic Sea has been an emission control area for SOX (SECA) since 2006. After January
2015, the ships operating there must use reduced-sulphur fuels with FSC below 0.1 wt %. The
introduction of these emission reductions has resulted in a substantial decrease of both the
primary particulate matter emissions and secondary formation of PM2.5 from shipping [93]. The
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lower sulfur emissions after introduction of the stricter regulations have probably also changed
the role of H2SO4 in the nucleation of ship exhausts.

5. The increased concentrations of UFP attributed to ship plumes significantly increase the short-term
exposures of the population in the vicinity of the harbor areas. Due to the frequently travelling
ships, these concentrations can substantially affect the daily mean UFP exposures and increase
mortality risks. A previous health study in Helsinki [94] found associations between all particle
fractions and cardiorespiratory health among people aged 65 years or older; however, according
to that study, the association was stronger for the accumulation mode than for ultrafine particles.
This highlights the need for epidemiological studies that take into account the spatial-temporal
distributions of various particle size fractions, especially those of ultrafine particles, in the
assessment of short-term exposures in different age groups.
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Appendix A. Fraction of Particles Remaining

The change of particle number due to coagulation in the expanding plume of the initial dilution
stage can be solved analytically. The number of particles in the expanding plume, NP, that is reached
asymptotically with increasing time is [95]:

NP = NP0·NT/(NP0 + NT), (A1)

http://www.mdpi.com/1660-4601/17/3/777/s1
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where NP0 is the number of particles directly at the stack and the unique dimensionless number,
NT, which depends only on the coagulation kernel and the plume volume. In a plume that expands
super-linearly with time, NT is defined as:

NT = (2·VP0·(α’−1))/KC·ti, (A2)

where VP0 is the initial plume volume, ti is the time of the expansion from the stack to its initial volume
(here 1 s), and KC is the effective coagulation coefficient. Parameter α’ depends on the atmospheric
stability (α’ > 1)). Based on Equations (A1) and (A2), Stuart et al. [70] derive the fraction of particles
remaining (due to coagulation) at the end of the initial plume expansion:

F = NP/NP0 = 2·(α’−1)/(KC·ti·NP0 + 2·(α’−1)). (A3)

Based on simulations with a multi-shelled Gaussian plume model, Stuart et al. [70] provide a
parameterization, where F depends on five parameters: Wind speed (U), stack radius (RS), particle
number emission rate (EPN), particle mean diameter (Dp), and geometric standard deviation (σP):

F = k/((U/U0)a + (RS/RS0)b + (EPN/EPN0)c + (σP/σP0)d + (Dp/Dp0)e + k), (A4)

where a, b, c, d, e, and k are fitted coefficients for different stability classes (Table 2 in [54]). The
parameters with “0” subscripts refer to the base conditions in [70] and are: U0 = 8 m s−1, RS0 = 1.2 m,
EPN0 = 1.1 × 1017 s−1, σP0 = 1.2, and Dp0 = 200 nm.

Appendix B. Nucleation between Sulfuric Acid and Organic Vapors

Paasonen et al. [96] proposed the occurrence of homogeneous homomolecular nucleation of H2SO4

along with homogeneous heteromolecular nucleation between H2SO4 and organic vapor molecules
(HET), with the following production rate of nucleated particles:

Jnucl = K1 [H2SO4]2 + K2 [H2SO4] [COVSV], (A5)

where the values of the pre-factors K1 and K2 for HET nucleation in diesel exhaust are 3.8 × 10−17

and 5.6 × 10−17 cm3 s−1, respectively, adopted from a study of a diesel engine equipped with an
oxidative after-treatment system [30]. Since n-alkanes do not form hydrogen bonds with sulfuric acid,
we introduced a semivolatile organic compound, COVSV, with the properties of adipic acid that takes
part in the HET nucleation. The COVS concentration was 6 × 1011 cm−3 in the sensitivity run using
HET nucleation.
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