7 research outputs found

    Epstein-Barr virus transcription factor Zta acts through distal regulatory elements to directly control cellular gene expression

    Get PDF
    Lytic replication of the human gamma herpes virus Epstein-Barr virus (EBV) is an essential prerequisite for the spread of the virus. Differential regulation of a limited number of cellular genes has been reported in B-cells during the viral lytic replication cycle. We asked whether a viral bZIP transcription factor, Zta (BZLF1, ZEBRA, EB1), drives some of these changes. Using genome-wide chromatin immunoprecipitation coupled to next-generation DNA sequencing (ChIP-seq) we established a map of Zta interactions across the human genome. Using sensitive transcriptome analyses we identified 2263 cellular genes whose expression is significantly changed during the EBV lytic replication cycle. Zta binds 278 of the regulated genes and the distribution of binding sites shows that Zta binds mostly to sites that are distal to transcription start sites. This differs from the prevailing view that Zta activates viral genes by binding exclusively at promoter elements. We show that a synthetic Zta binding element confers Zta regulation at a distance and that distal Zta binding sites from cellular genes can confer Zta-mediated regulation on a heterologous promoter. This leads us to propose that Zta directly reprograms the expression of cellular genes through distal elements

    Effects of melatonin on biochemical factors and food and water consumption in diabetic rats

    No full text
    Background: Diabetic neuropathy is one of the serious problems due to microvessel vasculopathy in diabetes. It has been reported that hyperglycemia and hypertriglyceridemia are the underlying mechanisms in inducing and progression of diabetic neuropathy. The aim of the present study was to investigate the effects of melatonin on serum glucose and lipid levels, as well as food consumption and water intake in streptozotocin-induced diabetic rats. Materials and Methods: Eighty male Wistar rats were randomly assigned to six groups including; normal control group, diabetic control group and 4 diabetic experimental groups that received melatonin intraperitoneally at doses of 2.5, 5, 10, and 20 mg/kg at the end of sixth week after verification of neuropathy by means of evaluation of sciatic nerve conduction velocity (MNCV), for two weeks. Blood glucose and lipid levels, body weight, the amounts of food consumption, and water intake were determined in all groups at weeks 0 (before diabetes induction), 3, 6, and at the end of eighth week. Results: Treatment with melatonin reduced significantly the serum glucose (P < 0.001) and triglyceride (P < 0.05) levels, food consumption (P < 0.001), and water intake (P < 0.001) in diabetic rats at the end of eighth week. However, melatonin had no significant effect on body weight of diabetic animals. Conclusions: Treatment with melatonin could improve several signs of diabetes, including hyperglycemia, hypertriglyceridemia, polyphagia, and polydipsia. Therefore, melatonin may be used as an adjunct therapy in the treatment of diabetes

    Preventive effect of Cynodon dactylon against ethylene glycol-induced nephrolithiasis in male rats

    No full text
    Objective: This study was carried out to investigate the preventive effects of hydroalcoholic extract of Cynodon dactylon(C.dactylon) roots on calcium oxalate calculi in rat. Materials and Methods: 24 Wistar rats were randomly divided into 4 groups: group A received tap drinking water while, Groups B, C, and D received 1% ethylene glycol daily for 28 days. Rats in groups C and D received ethanolic extract of C.dactylon at doses equivalent to 3.2 mg/kg and 12.6 mg/kg of root powder, respectively in drinking water from day 0 to day 28. Urine and blood were collected on days 0 and 28 and analyzed for biochemical elements. After 28 days, the kidneys were removed and prepared for histological evaluation of calcium oxalate deposits (CaOx). Results: The number of CaOx deposits in 10 microscopic fields of  kidney slices in group B was 24.5 ± 4.40 which was significantly higher than group A (

    Bioactivity and pharmacological potential of date palm (phoenix dactylifera L.) against Pandemic COVID‑19: a comprehensive review

    No full text
    A novel coronavirus disease (COVID-19) or severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), transmitted from person to person, has quickly emerged as the pandemic responsible for the current global health crisis. This infection has been declared a global pandemic, resulting in a concerning number of deaths as well as complications post-infection, primarily among vulnerable groups particularly older people and those with multiple comorbidities. In this article, we review the most recent research on the role of date palm (Phoenix dactylifera L.) fruits (DPFs) to prevent or treat COVID-19 infection. The mechanisms underlying this preventive or therapeutic efect are also discussed in terms of bioactivity potentials in date palm, e.g., antimicrobial, antioxidant, anticancer, anti-diabetic, anti-infammatory, neuroprotective, and hemolytic potential, as well as prospect against COVID-19 disease and the potential product development. Therefore, it can be concluded that regular consumption of DPFs may be associated with a lower risk of some chronic diseases. Indeed, DPFs have been widely used in folk medicine since ancient times to treat a variety of health conditions, demonstrating the importance of DPFs as a nutraceutical and source of functional nourishment. This comprehensive review aims to summarize the majority of the research on DPFs in terms of nutrient content and biologically active components such as phenolic compounds, with an emphasis on their roles in improving overall health as well as the potential product development to ensure consumers’ satisfaction in a current pandemic situation. In conclusion, DPFs can be given to COVID19 patients as a safe and effective add-on medication or supplement in addition to routine treatments
    corecore