56 research outputs found

    Evaluation of Phaseolus acutifolius A. Gray plant introductions under high temperatures in a controlled environment

    Get PDF
    Heat susceptibility is a cause of yield loss in common bean (Phaseolus vulgaris L.) in temperate and tropical lowland growing regions. Interspecific hybridization with related species that include tepary bean (Phaseolus acutifolius A. Gray) can potentially be used to transfer heat tolerance traits to common bean. This study evaluated 25 tepary bean plant introductions (PIs) following exposure to high-temperature (35°C day/32°C night) and control temperature (27°C day/24°C night) during reproductive development. These 25 PIs were selected for high yield potential in a 14h photoperiod greenhouse environment. High temperature when compared to non-stress treatment resulted in a mean reduction in seed yield of 88.8% among tepary beans and caused 100% yield loss in common beans. Twelve P. acutifolius PIs exhibited negligible yield under heat-stress when compared to control treatment. Although yields of these accessions were low under very high-temperature conditions, PI 200902, PI 312637, PI 440785, PI 440788, and PI 440789 exhibited the highest yield component stability under the high temperature treatmen

    Diallel analysis of yield components of snap beans exposed to two temperature stress environments

    Get PDF
    Ten snap beans (‘Barrier', ‘Brio', ‘Carson', ‘Cornell 502', ‘CT 70', ‘HB 1880', ‘Hystyle', ‘Labrador', ‘Opus' and ‘Venture') were selected for differential temperature tolerance and used as parents in a complete diallel mating design. The 45 F1 hybrid lines (with reciprocals) and parents were screened at 32 ∘C day/28 ∘C night, and in a separate experiment, 16 ∘C day/10 ∘C night, during reproductive development in replicated controlled environments. Variation for yield under temperature treatments was observed among parents and hybrids, with certain hybrids exceeding parental performance. Significant (P≤ 0.0001) general combining ability (GCA), and significant (P≤ 0.05) specific combining ability (SCA) were observed for yield components including pod number, seed number, and seeds per pod. There was evidence that pod number and seeds per pod under temperature stress are under separate genetic control. Reciprocal effects and heterosis were not significant. GCA could not be predicted from parental performance. The breeding line ‘Cornell 502' had the highest GCA under high temperature, and the cultivar ‘Brio' had the highest GCA under low temperature. The cross ‘Brio' × ‘Venture' was high yielding in both temperature treatments. Heat tolerance and chilling tolerance were associated in certain parents and hybrids. However, performance under high and low temperature treatments was not generally correlated in the parents and hybrids, indicating that these traits should be selected separatel

    Impact of imputation methods on the amount of genetic variation captured by a single-nucleotide polymorphism panel in soybeans

    Get PDF
    Background Success in genome-wide association studies and marker-assisted selection depends on good phenotypic and genotypic data. The more complete this data is, the more powerful will be the results of analysis. Nevertheless, there are next-generation technologies that seek to provide genotypic information in spite of great proportions of missing data. The procedures these technologies use to impute genetic data, therefore, greatly affect downstream analyses. This study aims to (1) compare the genetic variance in a single-nucleotide polymorphism panel of soybean with missing data imputed using various methods, (2) evaluate the imputation accuracy and post-imputation quality associated with these methods, and (3) evaluate the impact of imputation method on heritability and the accuracy of genome-wide prediction of soybean traits. The imputation methods we evaluated were as follows: multivariate mixed model, hidden Markov model, logical algorithm, k-nearest neighbor, single value decomposition, and random forest. We used raw genotypes from the SoyNAM project and the following phenotypes: plant height, days to maturity, grain yield, and seed protein composition. Results We propose an imputation method based on multivariate mixed models using pedigree information. Our methods comparison indicate that heritability of traits can be affected by the imputation method. Genotypes with missing values imputed with methods that make use of genealogic information can favor genetic analysis of highly polygenic traits, but not genome-wide prediction accuracy. The genotypic matrix captured the highest amount of genetic variance when missing loci were imputed by the method proposed in this paper. Conclusions We concluded that hidden Markov models and random forest imputation are more suitable to studies that aim analyses of highly heritable traits while pedigree-based methods can be used to best analyze traits with low heritability. Despite the notable contribution to heritability, advantages in genomic prediction were not observed by changing the imputation method. We identified significant differences across imputation methods in a dataset missing 20 % of the genotypic values. It means that genotypic data from genotyping technologies that provide a high proportion of missing values, such as GBS, should be handled carefully because the imputation method will impact downstream analysis

    Yield prediction by machine learning from UAS‑based mulit‑sensor data fusion in soybean

    Get PDF
    16 p.Nowadays, automated phenotyping of plants is essential for precise and cost-effective improvement in the efficiency of crop genetics. In recent years, machine learning (ML) techniques have shown great success in the classification and modelling of crop parameters. In this research, we consider the capability of ML to perform grain yield prediction in soybeans by combining data from different optical sensors via RF (Random Forest) and XGBoost (eXtreme Gradient Boosting). During the 2018 growing season, a panel of 382 soybean recombinant inbred lines were evaluated in a yield trial at the Agronomy Center for Research and Education (ACRE) in West Lafayette (Indiana, USA). Images were acquired by the Parrot Sequoia Multispectral Sensor and the S.O.D.A. compact digital camera on board a senseFly eBee UAS (Unnamed Aircraft System) solution at R4 and early R5 growth stages. Next, a standard photogrammetric pipeline was carried out by SfM (Structure from Motion). Multispectral imagery serves to analyse the spectral response of the soybean end-member in 2D. In addition, RGB images were used to reconstruct the study area in 3D, evaluating the physiological growth dynamics per plot via height variations and crop volume estimations. As ground truth, destructive grain yield measurements were taken at the end of the growing season.SI"Development of Analytical Tools for Drone-based Canopy Phenotyping in Crop Breeding" (American Institute of Food and Agriculture

    Phenotypic Variation and Genetic Architecture for Photosynthesis and Water Use Efficiency in Soybean (Glycine max L. Merr)

    Get PDF
    Photosynthesis (A) and intrinsic water use efficiency (WUE) are physiological traits directly influencing biomass production, conversion efficiency, and grain yield. Though the influence of physiological process on yield is widely known, studies assessing improvement strategies are rare due to laborious phenotyping and specialized equipment needs. This is one of the first studies to assess the genetic architecture underlying A and intrinsic WUE, as well as to evaluate the feasibility of implementing genomic prediction. A panel of 383 soybean recombinant inbred lines were evaluated in a multi-environment yield trial that included measurements of A and intrinsic WUE, using an infrared gas analyzer during R4–R5 growth stages. Genetic variability was found to support the possibility of genetic improvement through breeding. High genetic correlation between grain yield (GY) and A (0.80) was observed, suggesting increases in GY can be achieved through the improvement of A. Genome-wide association analysis revealed quantitative trait loci (QTLs) for these physiological traits. Cross-validation studies indicated high predictive ability (>0.65) for the implementation of genomic prediction as a viable strategy to improve physiological efficiency while reducing field phenotyping. This work provides core knowledge to develop new soybean cultivars with enhanced photosynthesis and water use efficiency through conventional breeding and genomic techniques

    Canopy Roughness: A New Phenotypic Trait to Estimate Aboveground Biomass from Unmanned Aerial System

    Get PDF
    Cost-effective phenotyping methods are urgently needed to advance crop genetics in order to meet the food, fuel, and fiber demands of the coming decades. Concretely, charac-terizing plot level traits in fields is of particular interest. Re-cent developments in high resolution imaging sensors for UAS (unmanned aerial systems) focused on collecting de-tailed phenotypic measurements are a potential solution. We introduce canopy roughness as a new plant plot-level trait. We tested its usability with soybean by optical data collect-ed from UAS to estimate biomass. We validate canopy roughness on a panel of 108 soybean [Glycine max (L.) Merr.] recombinant inbred lines in a multienvironment trial during the R2 growth stage. A senseFly eBee UAS platform obtained aerial images with a senseFly S.O.D.A. compact digital camera. Using a structure from motion (SfM) tech-nique, we reconstructed 3D point clouds of the soybean experiment. A novel pipeline for feature extraction was de-veloped to compute canopy roughness from point clouds. We used regression analysis to correlate canopy roughness with field-measured aboveground biomass (AGB) with a leave-one-out cross-validation. Overall, our models achieved a coefficient of determination (R2) greater than 0.5 in all trials. Moreover, we found that canopy roughness has the ability to discern AGB variations among different geno-types. Our test trials demonstrate the potential of canopy roughness as a reliable trait for high-throughput phenotyping to estimate AGB. As such, canopy roughness provides practical information to breeders in order to select pheno-types on the basis of UAS data

    Genetic Characterization of the Soybean Nested Association Mapping Population

    Get PDF
    A set of nested association mapping (NAM) families was developed by crossing 40 diverse soybean [Glycine max (L.) Merr.] genotypes to the common cultivar. The 41 parents were deeply sequenced for SNP discovery. Based on the polymorphism of the single-nucleotide polymorphisms (SNPs) and other selection criteria, a set of SNPs was selected to be included in the SoyNAM6K BeadChip for genotyping the parents and 5600 RILs from the 40 families. Analysis of the SNP profiles of the RILs showed a low average recombination rate. We constructed genetic linkage maps for each family and a composite linkage map based on recombinant inbred lines (RILs) across the families and identified and annotated 525,772 high confidence SNPs that were used to impute the SNP alleles in the RILs. The segregation distortion in most families significantly favored the alleles from the female parent, and there was no significant difference of residual heterozygosity in the euchromatic vs. heterochromatic regions. The genotypic datasets for the RILs and parents are publicly available and are anticipated to be useful to map quantitative trait loci (QTL) controlling important traits in soybean

    Genetic Architecture of Soybean Yield and Agronomic Traits

    Get PDF
    Soybean is the world’s leading source of vegetable protein and demand for its seed continues to grow. Breeders have successfully increased soybean yield, but the genetic architecture of yield and key agronomic traits is poorly understood. We developed a 40-mating soybean nested association mapping (NAM) population of 5,600 inbred lines that were characterized by single nucleotide polymorphism (SNP) markers and six agronomic traits in field trials in 22 environments. Analysis of the yield, agronomic, and SNP data revealed 23 significant marker-trait associations for yield, 19 for maturity, 15 for plant height, 17 for plant lodging, and 29 for seed mass. A higher frequency of estimated positive yield alleles was evident from elite founder parents than from exotic founders, although unique desirable alleles from the exotic group were identified, demonstrating the value of expanding the genetic base of US soybean breeding

    Variable Copy Number, Intra-Genomic Heterogeneities and Lateral Transfers of the 16S rRNA Gene in Pseudomonas

    Get PDF
    Even though the 16S rRNA gene is the most commonly used taxonomic marker in microbial ecology, its poor resolution is still not fully understood at the intra-genus level. In this work, the number of rRNA gene operons, intra-genomic heterogeneities and lateral transfers were investigated at a fine-scale resolution, throughout the Pseudomonas genus. In addition to nineteen sequenced Pseudomonas strains, we determined the 16S rRNA copy number in four other Pseudomonas strains by Southern hybridization and Pulsed-Field Gel Electrophoresis, and studied the intra-genomic heterogeneities by Denaturing Gradient Gel Electrophoresis and sequencing. Although the variable copy number (from four to seven) seems to be correlated with the evolutionary distance, some close strains in the P. fluorescens lineage showed a different number of 16S rRNA genes, whereas all the strains in the P. aeruginosa lineage displayed the same number of genes (four copies). Further study of the intra-genomic heterogeneities revealed that most of the Pseudomonas strains (15 out of 19 strains) had at least two different 16S rRNA alleles. A great difference (5 or 19 nucleotides, essentially grouped near the V1 hypervariable region) was observed only in two sequenced strains. In one of our strains studied (MFY30 strain), we found a difference of 12 nucleotides (grouped in the V3 hypervariable region) between copies of the 16S rRNA gene. Finally, occurrence of partial lateral transfers of the 16S rRNA gene was further investigated in 1803 full-length sequences of Pseudomonas available in the databases. Remarkably, we found that the two most variable regions (the V1 and V3 hypervariable regions) had probably been laterally transferred from another evolutionary distant Pseudomonas strain for at least 48.3 and 41.6% of the 16S rRNA sequences, respectively. In conclusion, we strongly recommend removing these regions of the 16S rRNA gene during the intra-genus diversity studies

    Cooperative Adaptation to Establishment of a Synthetic Bacterial Mutualism

    Get PDF
    To understand how two organisms that have not previously been in contact can establish mutualism, it is first necessary to examine temporal changes in their phenotypes during the establishment of mutualism. Instead of tracing back the history of known, well-established, natural mutualisms, we experimentally simulated the development of mutualism using two genetically-engineered auxotrophic strains of Escherichia coli, which mimic two organisms that have never met before but later establish mutualism. In the development of this synthetic mutualism, one strain, approximately 10 hours after meeting the partner strain, started oversupplying a metabolite essential for the partner's growth, eventually leading to the successive growth of both strains. This cooperative phenotype adaptively appeared only after encountering the partner strain but before the growth of the strain itself. By transcriptome analysis, we found that the cooperative phenotype of the strain was not accompanied by the local activation of the biosynthesis and transport of the oversupplied metabolite but rather by the global activation of anabolic metabolism. This study demonstrates that an organism has the potential to adapt its phenotype after the first encounter with another organism to establish mutualism before its extinction. As diverse organisms inevitably encounter each other in nature, this potential would play an important role in the establishment of a nascent mutualism in nature
    • …
    corecore