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Photosynthesis (A) and intrinsic water use efficiency (WUE) are physiological traits
directly influencing biomass production, conversion efficiency, and grain yield. Though
the influence of physiological process on yield is widely known, studies assessing
improvement strategies are rare due to laborious phenotyping and specialized
equipment needs. This is one of the first studies to assess the genetic architecture
underlying A and intrinsic WUE, as well as to evaluate the feasibility of implementing
genomic prediction. A panel of 383 soybean recombinant inbred lines were evaluated
in a multi-environment yield trial that included measurements of A and intrinsic WUE,
using an infrared gas analyzer during R4–R5 growth stages. Genetic variability was
found to support the possibility of genetic improvement through breeding. High genetic
correlation between grain yield (GY ) and A (0.80) was observed, suggesting increases in
GY can be achieved through the improvement of A. Genome-wide association analysis
revealed quantitative trait loci (QTLs) for these physiological traits. Cross-validation
studies indicated high predictive ability (>0.65) for the implementation of genomic
prediction as a viable strategy to improve physiological efficiency while reducing field
phenotyping. This work provides core knowledge to develop new soybean cultivars
with enhanced photosynthesis and water use efficiency through conventional breeding
and genomic techniques.

Keywords: gas exchange, yield, soybean, genomic prediction, efficiency, biomass

INTRODUCTION

Since the early 1900s, soybean yields have increased steadily (Hartwig, 1973; Specht et al., 1999;
Suhre et al., 2014) and the rate of annual increases is estimated as 22–27 kg ha−1 yr−1 (Specht
et al., 1999; USDA-ERS, 2011; Fox et al., 2013; Koester, 2014). Considering the gap between the
current and the maximum efficiency of light conversion into biomass (Melis, 2009; Zhu et al.,
2010), a higher rate of gain may be achievable. Doubling the efficiency of converting solar radiation
into biomass is still theoretically possible for soybean, as current values of radiation use efficiency
range from 2.3 to 4.3% and the theoretical maximum was estimated to be 9.4% (Beadle et al., 1987;
Zhu et al., 2010). Improving the conversion of solar radiation into biomass and yield requires the
optimization of physiological and biochemical processes linked to CO2 uptake and reduction, water
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loss, CO2 uptake – water lost relationship, and nitrogen
assimilation. Some of these correspond to the gas exchange
dynamic, specifically photosynthesis (A) and water use efficiency
(WUE). Although a positive relationship between photosynthesis
and yield is not always observed (Long et al., 2006), a positive
correlation between yield and photosynthesis has been found in
soybean (Ainsworth et al., 2012). This positive association is also
documented for other crops like rice, where Ohsumi et al. (2007)
and Peng et al. (2008) reported higher photosynthetic rates and
improved physiological traits as significant contributors for high
yielding cultivars. Similar results were presented by Tollenaar
(1991) and Duvick (2005) in maize, and Fischer et al. (1998) and
Xiao et al. (2012) in wheat.

Although gas exchange parameters in soybean are well-
documented using small panels (Bruns, 2014; Gai et al., 2017; Li
S.Y. et al., 2017; Ort et al., 2017), studies of larger panels are still
needed to make genetic inferences. In this study, photosynthesis
and intrinsic water use efficiency as valuable parameters for
breeding purposes in soybean are explored through a set of
field experiments where a relatively large and diverse panel was
evaluated. This research focuses on determining the natural
diversity of A and WUE in soybean. Likewise, the genetic
architecture of these traits is revealed through a genome wide
association approach. Finally, the viability of implementing
genomic prediction is assessed.

MATERIALS AND METHODS

Plant Materials
In this study, 383 recombinant inbred lines (RIL) from 32 families
(12 RILs per family) coming from a subset of the Soybean Nested
Association Mapping (SoyNAM) panel (Diers et al., 2018; Xavier
et al., 2018) were assessed. Lines were selected with the goal
of creating a panel constrained for maturity while retaining
phenotypic variance for yield and other traits. Selection of the
RILs was based on Best Linear Unbiased predictors (BLUP) for
maturity, measured as the number of days from planting to
physiological maturity, corresponding to soybean growth stage
R8 (Fehr and Caviness, 1977), and grain yield calculated from
field experiments from Indiana and Illinois during the years 2011
and 2014 (Xavier, 2016). The RILs selected for the panel were in
the maturity range of ±2 days, while the yield varied from 3,088
to 4,396 kg ha−1 (Supplementary Figure S1). The panel includes
lines from three classes of families: 16 from elite parents, 12 with
diverse pedigrees, and four that are high-yielding under drought
conditions (Supplementary Table S1). The NAM hub parent for
the families is cultivar IA3023. The details about families are
available in SoyBase through the website1 and the full list of RILs
is also presented here in Supplementary Table S2.

Field Design
Experiments were grown in one location in 2017 and two
locations in 2018. An alpha lattice incomplete block design with
383 RILs, two complete replications and 32 incomplete blocks

1www.soybase.org/SoyNAM

per replication was planted at the Purdue University Agronomy
Center for Research and Education – ACRE (40◦28′20.5′′N
86◦59′32.3′′W) in 2017 (ACRE_2017). Experimental units
corresponded to six rows plots (0.76 m × 3.35 m) with
a seeding rate of 35 seeds m−2. In 2017, 66 RILs were
discarded as consequence of non-uniform emergence. In
2018, the same experimental design was planted in two
locations: ACRE (ACRE_2018) and Romney, IN (40◦14′59.1′′N
86◦52′49.4′′W; RMN_2018), with data collected from 382 and
368 RILs, respectively. Soil types included Chalmers silty clay
loam (Typic Endoaquolls) and Raub-Brenton complex (Aquic
Argiudolls) for ACRE and Drummer soils (Typic Endoaquolls)
for Romney (NRCS, 2018). High natural soil fertility confirmed
through the soil analysis (Supplementary Table S3), along
with the crop management ensured adequate nutritional status
during the growing season. Mean precipitation reached 132,
130, and 91 mm/month for ACRE_2017, ACRE_2018, and
RMN_2018, respectively (iClimate, 2019). Absence of water stress
throughout the growing season and in particular during the
measurements period was confirmed through the water balance
(Supplementary Tables S4–S6). FAO 56 guide was followed as
theoretical framework for the water balance (Allen et al., 1998),
while the specific information about field capacity, permanent
wilting point, and bulk specific density was retrieved from
Wiersma (1984). Reference evapotranspiration was computed
through Hargreaves et al. (1985) equation and the crop
coefficients (Kc) were obtained from Al-Kaisi (2000).

Field Phenotyping
Gas exchange is a biological process influenced by several
environmental factors including photosynthetic active radiation
(PAR), CO2 concentration, water and nitrogen status, and
temperature (Taiz et al., 2014). To account for most of
these sources of variation and obtain comparable measurement
from all plots, a highly controlled gas exchange protocol was
implemented using a portable photosynthesis system (LI-COR
6400XT, LI-COR, Lincoln, NE). An initial light response survey
using the rapid protocol proposed by LI-COR (2012) was
carried out in random plots to establish the minimum amount
of PAR required to get stable, constant flat assimilation rates
(Supplementary Figure S2). The consistency of this PAR value
(1,600 µmol photons m−2 s−1) was confirmed in different
random selected cultivars and subsequently set as constant for the
measurements. The LED light source within the 6 cm2 chamber
was used. To control other variables affecting the gas exchange,
CO2 concentration and temperature were also set as constant at
400 µmol mol−1 and 25◦C, respectively. The relative humidity
was restricted to 75 ± 10%. To avoid non-adapted reading
as consequence of significant differences between the external
environment and the chamber, each leaf was previously adapted
for at least three minutes or until getting stable readings. Outlier
determination following the criterion 1.5 × interquantile range
(IQR) were carried out and atypical values caused by non-adapted
leaves were eliminated. Normality in the data set was confirmed
through histograms (Supplementary Figure S3).

The gas exchange parameters were measured before the seed
filling phenological period, from late R4 and early R5 (Fehr
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and Caviness, 1977), in the third uppermost fully developed
leaf, in three representative plants from each experimental unit
from a complete replication. This specific phenological stage
was chosen based on literature reports of maximum rates of
crop photosynthesis, crop growth, and pod production (Egli and
Bruening, 2002; Board and Kahlon, 2012). In addition, natural
or induced variation in the photosynthetic rate during this
period directly influences the yield components number of pods
and number of seeds (Egli, 2010). To confirm developmental
synchronization among cultivars, R5 was scored in the panel
obtaining ranges of 6, 5, and 9 days for ACRE_2017, ACRE_2018,
and RMN_2018, respectively. Four portable photosynthesis
systems previously calibrated with equal configurations were
used in daily sampling protocol spanning approximately 7 h
(10:00 h–5:00 h). Sampling occurred over a period of less than
6 days at each location. Negligible influence of diurnal time
on the readings was confirmed plotting the reading versus
daily time (Supplementary Figure S4). This protocol evaluates
the maximum photosynthetic capability and their associated
intrinsic water use efficiency (ratio photosynthesis/stomatal
conductance – gs) in field under comparable conditions. Finally,
the rows four and five of each plot were mechanically harvested
and weighted for yield calculation. Moisture for grain yield (GY)
was standardized to 13% and extrapolated to hectare.

Genomic Information
The complete SoyNAM panel was genotyped through an illumina
soybean array designed specifically for the NAM population,
the SoyNAM6K BeadChip SNP, with 5,305 single nucleotide
polymorphism (SNP) markers (Song et al., 2017). These markers
were originally identified using the genome sequences of the
founder parents (41). Besides genome sequence, the SoyNAM
founders parents were also evaluated with the soySNP50K
Beadchip (Song et al., 2013) detecting 42,509 SNP markers.
Using the framework of the mapped SoyNAM6K markers and
the software finhap f90 (VanRaden et al., 2015), the segregating
SoySNP50K markers were projected onto the SoyNAM RILs.
“Williams 82” reference genome (Wm82.a2.v1) positions in pair
bases (pb) were used. Quality control for minor allele frequency
(MAF < 0.15) (Jarquín et al., 2014; Xavier et al., 2016) was
performed in the projected SNPs data set ending up with 23,119
SNPs, which are used as genotypic information. The original
allele frequency plot as well as the representation of each RIL
in the principal component plot were also explored to discard
unusual patterns (Supplementary Figure S5).

Statistical Model and Data Analyses
Data collected were consolidated and analyzed using the mixed
model approach in the software R through the package “lme4”
(Bates et al., 2015). Sources of variation were: environment
(combination year× location), block, and RIL, with the covariate
of equipment (1). Though equipment of the same model and
configuration were used, differences due to a particular analyzer
were removed with this covariate. The model implemented is:

Yijk= µ+ αi+βj+γk+(βγ)jk+δl+eijk (1)

where Y is the vector of phenotypes measured with the ith
equipment in the jth environment into the kth block, µ

is the intercept, α accounts for the effect of the covariate
equipment, β corresponds to the effects of environment, δ

accounts for the block effect, βγ corresponds to the interaction
environment × block, δ accounts for the genetic effect, and e
controls the error. The covariate was treated as a fixed effect
while the other sources of variation were considered as random.
Given the limitations in humidity control offered by the LI-COR
6400XT and the range set in this research for relative humidity,
leaf vapor pressure deficit (VPDL) reported by the equipment was
also used as covariate in the model fitted for WUE.

Association Analysis
A genome wide association analysis under the empirical Bayesian
framework was performed using the R package “NAM” (Xavier
et al., 2015). In each case, BLUPs from Eq. 1 was treated as
phenotypes, while the set of 23,119 projected SNPs was used
as genotypes. Population structure was accounted for under the
argument fam in the function gwas2. The base model for the
genome scanning is described by:

y = µ+ Zu+ g + e (2)

where y corresponds to the BLUPs values, Zu is the incidence
matrix of haplotypes generated from marker data, µ is the
vector of regression coefficients of within-family marker effects,
g corresponds to the polygenic coefficients accounting for
population structure, and e is the vector of residuals. Statistical
significance of each marker was calculated using the likelihood
ratio test (LRT) between a full model including the marker, Zu,
and a reduced model without marker. The association between
markers and traits was evaluated using a corrected p-value
threshold of 0.0002. This threshold corresponds to the p-value of
0.01 divided by the number of unique segments (58), estimated as
the number of significant eigenvalues computed from the spectral
decomposition of the genetic relationship matrix. The R package
CM-plot was used to create the Manhattan plots (LiLin, 2018).
To discard confounding effects, the signals were contrasted with
known quantitative trait loci (QTLs) for maturity genes (Zhang
et al., 2014). The exploration for potential candidates genes was
carried out in the range on the linkage disequilibrium (LD)
reported for each chromosome (Wen et al., 2015).

Genetic, Additive Variances, and Genetic
Correlation
Broad-sense heritability (H) on an entry mean basis and plot basis
was calculated from model (1) using the variance components
from the mixed model in the Eq. 1. Heritability on an entry mean
basis was calculated through the equation below (Nyquist, 1991;
Piepho and Möhring, 2007).

H =
Vg

Vg + Ve
r

(3)

where H corresponds to broad sense heritability on mean entry
basis, Vg is the genetic variance, Ve is the variance of error, and r
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is the number of replications. Heritability on a plot basis followed
the same equation, but the variance of error was not weighted into
the number of replications. Narrow sense heritability (h2) was
also calculated from different whole-genome regressions using
the expectation-maximization restricted maximum likelihood
method from the “NAM” package (Xavier et al., 2015). For each
regression, a different subset of SNPs was considered based on the
−log p-values from the association analysis (Table 1). Subsets of
genomic data with markers that displayed −log p-values higher
than 0.0, 0.5, 1.0, 1.5, and 2.0 to the target traits were considered.

To determine the genetic correlations, a multivariate
mixed model using the restricted maximum likelihood
(reml) approach was solved using as response variable
a matrix with the BLUPs values for A, WUE, and GY
from Eq. 1. A genetic relationship matrix calculated from
the full data set of SNPs was included in the model to
account for the genetic effect. The function reml from the
NAM package (Xavier et al., 2017a) was used. However,
correlation involving WUE are not reported here since it
is a derivate variable from photosynthesis and stomatal
conductance (gs).

Genomic Prediction
Using the SNPs above the significance threshold of −log
p-values from 0 to 2 from the genomic information already
described, a set of whole-genome regressions were computed
using the Bayesian framework (de los Campos et al., 2013).
Seven whole-genome regression methods were fitted via
Markov chain Monte Carlo (MCMC) implemented in the R
package bWGR (Xavier et al., 2018): BayesA, BayesB, BayesC,
BLASSO (BayesL), Bayes ridge regression (BayesRR), BayesCpi
and BayesDpi (Habier et al., 2011). Likewise, seven methods
fitted via expectation maximization (EM): BayesA (emBA),
BayesB (emBB), BayesC (emBC), BLASSO (emBL), BLASSO2
(emDE), maximum likelihood (emML), and Bayesian ridge
regression (emRR) were also fitted. Five-fold cross-validation
was implemented splitting the data set randomly in proportions
80 (training): 20 (validation) each time. Correlation coefficients
between measured and predicted breeding values in the
validation set were calculated each time. Function mcmcCV
and emCV from the R package bWGR were used to perform
the cross-validations.

RESULTS

Phenotypic Variation
Phenotypic variation was observed for A and WUE (Figure 1).
Photosynthetic rates ranged from 21.3 to 31.8 µmol CO2
m−2 s−1 with an overall mean of 27.0 µmol CO2 m−2 s−1

(Figure 1A). Statistically significant differences (p < 0.001)
among environments were detected, with means of 26.9, 27.3,
and 26.6 µmol CO2 m−2 s−1 for ACRE_2017, ACRE_2018,
and RMN_2018, respectively (Supplementary Figures S6–S8).
The ratio A/gs, also called intrinsic WUE (Condon et al., 2002;
Gilbert et al., 2011; Blankenagel et al., 2018), showed an overall
mean of 20 µmol CO2 mol−1 H2O (Figure 1C). Statistically
significant differences (p < 0.001) among environments were
detected, with means of 20.2, 17.1, and 22.7 µmol CO2 mol−1

H2O for ACRE_2017, ACRE_2018, and RMN_2018, respectively
(Supplementary Figures S6–S8). We observed the lowest WUE
in families CLOJ173-6-8, NE3001, and Prohio, with 16.9, 17.6,
and 18.0 µmol CO2 mol−1 H2O, contrasting with LG94-1128,
LG94-2979, and LG90-2550 with 22.8, 21.7, and 21.3 µmol
CO2 mol−1 H2O, respectively.

Genetic Architecture
The genome-wide association analysis identified SNPs and
genomic regions associated with A and WUE (Figure 2).
Associations were found between photosynthesis and one SNP
located on chromosome 3 and two SNPs on chromosome 15.
Intrinsic WUE, in turn, was associated with two SNPs on
chromosome 7 and single SNPs on chromosomes 4, 15, and
16. All SNPs detected were located in euchromatic regions
(Song et al., 2016) except for the SNPs for photosynthesis
and intrinsic WUE located on chromosome 3 and 16,
respectively (Table 2).

Genetic, Additive Variances, and Genetic
Correlations
The proportion of the variance explained by genetics was 21%
for A and 33% for WUE (Table 3). Repeatability, or heritability
on an entry mean basis, reached 0.44 for A and 0.60 for WUE.
Additive genetic effects calculated through the kinship or “K”
matrices, generated separately using SNPs with −log p-values
higher than 0.0, 0.5, and 1.0, were able to account for 82–
95% of the genetic variance estimated (Table 3). Although
smaller kinship matrices built with SNPs with −log p-values
thresholds of 1.5 and 2.0 are not able to explain the genetic
variance completely, they were still successful capturing∼87 and
∼65% of the total genetic variance, respectively. Remarkably high
genetic correlations between grain yield and photosynthesis was
observed with a value of 0.80.

Genomic Prediction
When SNPs in the interval −log p-value > 0.0 to −log
p-value > 1.0 were used, genome regressions via MCMC
(Figure 3) showed stable predictive ability, described as the
correlation coefficients (R) between predicted and observed
values. Maximum correlation for A (Figure 3A) and WUE

TABLE 1 | Number of SNPs for each data set created using as discrimination parameter the –log p-value from the association analysis study.

Trait −log p-value > 0 −log p-value > 0.5 −log p-value > 1.0 −log p-value > 1.5 −log p-value > 2.0

A 7,025 5,408 2,226 714 220

WUE 8,043 6,171 2,619 845 230
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FIGURE 1 | Phenotypic diversity for photosynthesis (A) and intrinsic water use efficiency (B) grouped by family in a soybean phenology-controlled panel. Three
hundred and eighty-three cultivars, 12 cultivars per family, and three environments. Colors represent the type of population assigned to the parent when the SoyNAM
panel was developed. Red circles denote the mean value, horizontal lines in the box indicate the median, dashed lines represent the minimum and maximum values,
and empty circles correspond to outliers.

FIGURE 2 | Genetic architecture for photosynthesis (A) and intrinsic water use efficiency (B) in a phenology-controlled soybean panel. Three hundred and
eighty-three cultivars and three environments. Chr indicates the chromosome, the red dashed circle represents the threshold expressed as –log p-value, and red
dots correspond to the significant SNPs.

(Figure 3B) of 0.70 and 0.74 were determined. Regardless
the threshold considered to select the SNPs, BayesL presented
the highest pooled predictive ability for A with 0.63, while
BayesDPi showed the best performance for WUE with predictive
ability of 0.64. Although their general performance improved
when the SNP data set became smaller (−log p-value > 1.5
and –log p-value > 2.0), the variable selection methods
BayesB and BayesC displayed the lowest correlation through
the different SNPs data sets. BayesB reported 22–27% less
predictive ability compared with the best methods, while
BayesC exhibited 24–30% lower correlation. Similar results were

also found when the same set of models was fitted through
EM regressions (Supplementary Figure S9). In this case, a
maximum correlation of 0.67 and 0.70 were observed for A and
WUE, respectively.

DISCUSSION

Phenotypic Variation
For photosynthesis, or A, values of 25–35 µmol CO2 m−2 s−1

were reported for soybeans in field (Gordon et al., 1982)
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TABLE 2 | Significant single nucleotide polymorphism (SNP) associated with photosynthesis (A) and intrinsic water use efficiency (WUE) in soybean.

Trait Chr Position SNP LOD σ 2 Gene Annotation

A 3 16015499 A/G 2.7 1.8 NA NA

15 46787588 C/T 2.8 4.3 Glyma.15g245300 Cytochrome P450 family member

15 41081388 C/T 2.5 2.9 Glyma.15g225000 NADH oxidoreductase-related

4 33984084 C/A 3.4 5.2 Glyma.04g152000 Alpha carbonic anhydrase 6

7 29855554 C/T 2.6 5.4 Glyma.07g172000 Trehalose-6-phosphate synthase

WUE 7 37317294 T/C 2.6 5.2 Glyma.07g204400 Glucosyl transferase

15 17653104 T/C 2.6 5.3 Glyma.15g182600 Glucosyl transferase – sucrose synthase

16 36805830 C/T 2.5 5.5 NA NA

Chr, chromosome; LOD, logarithm of the odds; σ2, variance explained by the SNP.

TABLE 3 | Broad sense heritability on plot basis (H plot), entry basis (H entry), and narrow (h2) sense heritability as function of the SNPs data set considered in soybean.

Trait H plot H entry h2 SNP > 0 h2 SNP > 0.5 h2 SNP > 1.0 h2 SNP > 1.5 h2 SNP > 2.0

A 0.21 0.44 0.87 0.92 0.95 0.85 0.60

WUE 0.33 0.60 0.82 0.90 0.95 0.89 0.70

SNPs were filtered based on the −log p-value from a genome wide association study. Photosynthesis (A) and intrinsic water use efficiency (WUE).

and greenhouse conditions (Hay et al., 2017). These values
are comparable to our observations considering the potential
limitations offered by the device used decades ago. Comparison
at the family level between the mean rate and the maximum A
attainable indicates a potential increase of at least 20%. Intrinsic
WUE has been less studied than A, but this research reveals that
there is also natural diversity to be exploited through breeding
programs. Water use is considered a limiting factors in the
modern soybean production (Specht et al., 1999) accounting for
until 30% of the yield gap (Grassini et al., 2015). A positive
and significant correlation (0.78) between transpiration, the main
source of water loss in plants, and yield was documented in
Chinese cultivars (Liu et al., 2012).

Although enhanced transpiration and WUE have been set
as functional target in new soybean cultivars (Sloane et al.,
1990; Manavalan et al., 2009; Miladinović et al., 2015), achieving
substantial progress in yield minimizing the water consume is
challenging. A study in china using materials of 82 year of
soybean breeding found an unbalance improvement between
E and A with increases in transpiration rate of ∼58% while
photosynthesis barely reached ∼18% (Liu et al., 2012). Though
these authors conclude that the biggest cost of producing high
yielding soybean cultivars is the augmented water consume,
our results show that doubling the intrinsic WUE (A/gs) might
be possible. Intrinsic WUE here documented is similar to
previous reports of Gilbert et al. (2011) and Bunce (2016)
in soybean and it is also in the range of other C3 species
(Medrano et al., 2015). Comparing the overall mean value
(20 µmol CO2 mol−1 H2O) with the maximum attainable
(54.4 µmol CO2 mol−1 H2O), it is hypothesized until 34 µmol
CO2 (1.5 mg CO2) extras can be fixed with the same rate
of H2O efflux through the stomata. Better understanding in
genetic basis of stomatal control seems to play a key role to
reduce the gap between actual and potential WUE in soybean
(Gilbert et al., 2011).

Genetic Architecture
Although genetic architecture for these physiological processes
has been a topic underexplored, the current study found
SNPs potentially associated with the traits. A is closely linked
to genes encoding for protein members of the cytochrome
P450 family and NADH oxidoreductase. Cytochrome proteins
catalyze the oxidation of diverse substrates using oxygen and
NAD(P)H (Xu et al., 2010). In plants, they are functionally
active transporting electrons and molecular oxygen generated
during the photosynthesis (Burow et al., 2016). Though there
were no QTLs associated with photosynthesis or carbon fixation
previously reported for chromosome 15 (Grant et al., 2010),
there is a reasonable background to hypothesize the relationship
between photosynthesis and cytochrome. In cyanobacterium, for
instance, an improved performance in A via increased electron
transport rate and ATP production was promoted as consequence
of doubling the activity of the cytochrome protein CYP1A1
(Berepiki et al., 2018). Induction of genes associated with these
proteins are also reported when atrazine and bentazon, herbicides
inhibitor of photosynthesis, are applied in soybean (Zhu et al.,
2009). Likewise, enhanced tolerance to linuron and chlortoluron,
herbicides also inhibitor of photosynthesis, are documented
when the expression of the cytochrome P450 protein CYP76B1 in
tobacco and Arabidopsis (Didierjean et al., 2002) and CYP71A10
in soybean (Siminszky et al., 1999) were carried out. QTLs
associated with photosynthesis under light saturation had been
already reported for chromosome 10 and 16 (Vieira et al., 2006).

The other association found on the chromosome 15 was linked
to a gene encoding for NADH oxidoreductase-related. This type
of protein catalyzes the oxidation of NADH and the reduction
of other compound (Moparthi and Hägerhäll, 2011). The
most common enzyme in this group is the NADH-ubiquinone
oxidoreductase, the largest enzyme in the mitochondrial
respiratory chain (Cardol, 2011). Respiration is the natural
complementary process of photosynthesis and their balance
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defines the net photosynthetic rate, the parameter measure by the
infrared gas exchange equipment. Then, it is hypothesized NADH
oxidoreductase influences photosynthesis through regulation of
oxidation-reduction rates presumably during the respiration.
The association found on the chromosome 3 had no previous
annotation or QTLs reported into the standard linkage block
(Wen et al., 2015) which might be explained by its location in a
heterochromatic pericentromeric region (Song et al., 2016). The
location of this SNP in a region with low recombination rate
implies that its LD is larger than the value reported for whole
the chromosome, extending the association to wider areas. Large
differences in LD pericentromeric regions and arm regions been
confirmed for soybean (Shu et al., 2015).

Intrinsic WUE was associated with regions on the
chromosome 4, 7, 15, and 16 (Table 2). QTLs potentially
associated with E and WUE had been previously reported on the
chromosome 4 (Kaler et al., 2017) but none of them overlap with
the QTL documented here. The closers QTLs already reported
correspond to WUE 2-g11 and WUE 2-g12, whose annotated
genes link to Glyma04g39850 (Integral membrane protein
DUF6) and Glyma04g41150 (RNA recognition motif. a.k.a.
RRM, RBD, or RNP domain) (Grant et al., 2010). A carbonic
anhydrase is proposed considering its role in the interconversion
of CO2 to HCO3

−, a fundamental step in the carbon dioxide
movement in aqueous medium type leaf cytosol (DiMario
et al., 2017). In C3 plants like soybean, carbonic anhydrase
can increase the carbon fixation through raising the internal
CO2 concentration in the chloroplast which reduces the
photorespiration (Ganai, 2017).

The SNP associated with WUE that we observed on
chromosome 7 at the position 29855554 bp is associated with
a trehalose-6-phosphate synthase. Trehalose is a disaccharide
present in bacteria, fungi, and invertebrates linked with
abiotic stress tolerance given its role as energy source,
compatible osmolyte, and protein/membrane stabilizer (Garg
et al., 2002; Iordachescu and Imai, 2008). Trehalose-6-phosphate,
an intermediate compound, acts as sucrose availability sensor,
while its overexpression increases stomatal guard cell sensitivity,
enabling fast stomata closing under drought stress (Delorge et al.,
2014). The SNP associated with WUE at position 37317294 bp
that we observed on chromosome 7, as well as the SNP on
chromosome 15, were associated with genes expressing glucosyl
transferase; a member of a large family of enzymes in charge
of transferring sugar moieties between molecules (Lairson et al.,
2008). Glucosyl transferases type uridine diphosphate UDP are
involved in osmotic, salt, and drought stress response in cotton
(Tai et al., 2008), Arabidopsis (Li et al., 2015; Li P. et al., 2017;
Zhang et al., 2016), and tobacco (Sun et al., 2013). Our observed
QTL on chromosome 7 do not overlap with drought tolerance
QTLs documented previously on this chromosome as drought
susceptibility index 6 (Du et al., 2009). The SNP we observed
on chromosome 15 is also linked with sucrose synthase enzyme.
In soybean nodules, a dramatic reduction in sucrose synthase
activity was reported by González et al. (1995) as a consequence
of water deprivation; the authors of that study proposed that
this enzyme played a role in nitrogen fixation, which would be
central to maintaining high assimilation rates under drought

conditions. A QTL for pubescence density is also already reported
in the same linkage block on chromosome 15 (Grant et al.,
2010). Leaf pubescence density may decrease leaf temperature
and restrict transpiration water loss via increased leaf boundary
layer resistance (Manavalan et al., 2009).

Heritability and Genetic Correlations
Heritability for the traits considered in this work is moderate
to low (Holland et al., 2010). Phenotyping gas exchange
implies challenges since these processes are highly influenced
by environmental factors such as light, temperature, nitrogen,
and water status among others (Taiz et al., 2014). Although the
equipment and protocol implemented to phenotype these traits
attempted to control most of these external variables, moderate
to high influence of factors beyond genetic was captured. Genetic
effects explain 44 and 60% of changes in the phenotypic values
for A and WUE, respectively. Heritability in entry mean bases
for A computed here is similar to the 41% previously reported in
soybean (Harrison et al., 1981). When kinship matrices estimated
with the SNPs associated with the specific trait were considered,
additive or transmissible effects accounted by 82–95% of the
genetic effect. The drastic reduction in the number of SNPs used
to estimate the kinship matrix limits the ability to capture the
genetic resemblance between individuals. The additive effect can
be captured with a considerable less number of SNPs, as long
as these SNPs show certain level of association with the trait
(Table 3). However, matrices excessively reduced are not able to
capture the additive effects completely. Including an extension of
the additive matrix through an extra matrix additive-by-additive
(epistasis) was attempted (data not shown) for scenarios with
reduced number of SNPs (−log p-value 1.5 and −log p-value
2.0). The additive-by-additive matrix improved the heritability in
the range of 11–34% when the number of SNPs was the lowest
(−log p-value 2.0) but it did not show substantial improvement
when −log p-value > 1.5 matrix was considered. Introducing
epistatic effects might help to explain genetic effects when the
number of markers is reduced. The fact heritability is relatively
constant in the interval−log p-value> 0.0 to−log p-value> 1.0
but decreases when data set becomes smaller aligns with previous
reports for flowering date, height and nodule number in alfalfa
(Stanton-Geddes et al., 2013). In this case, authors reported
similar h2 calculated through SNPs data sets with size ranged
between 25,000 and 5 million but comparably lower h2 when
2,500 and 25 SNPs data sets were used.

We observed a lack of phenotypic correlation between A and
GY (−0.02) that agrees with previous reports summarized by
Long et al. (2006); however, the design of our study allowed
us to also calculate the genetic correlations, which was positive
(0.80). This observation indicates strong non-genetic factors
influencing assimilation rate. A high genetic correlation between
traits predicts potential outcomes of selection through indirect
gains (Searle, 1978) and our results indicate selection to increase
A may positively affect grain yield.

Genomic Prediction
The complexity of field measurements, the limited variance
explained by significant SNPs, and the moderate to low
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FIGURE 3 | Genomic prediction performance based of five-fold cross-validation of Markov Chain Monte Carlo (MCMC) methods for photosynthesis (A) and intrinsic
water use efficiency (B) in a phenology-controlled soybean panel. Three hundred and eighty-three cultivars and three environments.

heritability for these traits, suggest genomic prediction-selection
as suitable methodology to approach their breeding (Desta and
Ortiz, 2014; Xavier et al., 2016). This work indicates this approach
is feasible since predictability through MCMC or Estimation
Maximization yields moderate to high correlation coefficients.
The correlation found here are lower that the values reported
for oil and protein (0.92), but comparable with yield (0.60–
0.79), yield component and morph-physiological parameters
like plant height, number of reproductive nods and days to
maturity in soybean (Jarquin et al., 2016; Xavier et al., 2016).
Although limiting the number of SNPs influences the predictive
ability especially when −log p-value is higher than 1.5 and 2.0,
the reduction in predictive ability for none of the traits was
higher than 20%. The use of selected sets of SNPs for genomic
prediction was previously reported in crops and animals. In
eucalyptus, for instance, similar predictive ability between large
(∼14,000–20,000) and reduced (∼5,000–10,000) SNPs data sets
was reported by Müller et al. (2017). In Brahman cattle, Li
et al. (2018) working with body weight, demonstrated that
data subsets of 3,000 SNPs selected through machine learning
methods yielded similar prediction accuracy than full genome
prediction through 38,082 SNPs. Genomic selection with low
density SNPs has also reported other benefits in breeding.
Raoul et al. (2017), for instance, improved the genetic gain
and better control the inbreeding in sheep using a SNP data
set ≤ 1,000 SNPs. Besides technical advantages, reduced data
sets also decrease the computational time to fit the model
up to 50% (Xavier et al., 2017b). Genome prediction through
relatively small number of SNPs (∼1,000–2,000) moderately
associated with the trait (−log p-value ≥ 1.0) is an appropriate
and consistency approach to predict photosynthesis and intrinsic
WUE across most of the methods considered. Although the
implementation of different methods for genome regression in
soybean yield and protein did not show significant improvement

(Duhnen et al., 2017), the methods ML, BLASSO and BayesDPi
showed a better performance for the traits evaluated here. The
fact Bayes B and BayesC had shown lower predictive ability
suggests that variable selection did not favor the predictive
ability for these physiological traits. Contrarily, a quality control
based on the significance of the genome-wide association
results was beneficial.

CONCLUSION

The existence of natural diversity and a preliminary genetic
architecture for photosynthesis and intrinsic WUE indicate
these traits can be improved through breeding strategies. New
technologies like genomic selection-prediction arises as valuable
approach to overcome the phenotyping bottleneck in gas
exchange. Pre-selecting SNPs for genomic prediction modeling
based on the significance of associations can benefit the predictive
ability. Improving photosynthesis through breeding techniques is
a viable strategy to increase yield in soybean, considering their
high positive genetic correlation.
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