482 research outputs found

    Les Algues Indicatrices De L'eutrophisation Et De La Contamination De La Lagune De Korba (Cap Bon Tunisie)

    Get PDF
    The concentrations of heavy metals (Fe, Zn, Pb and Mn) were determined in two green algae (Enteromorpha intestinalis and Chaetomorpha Linium) collected from April 2012 to February 2013 in nine stations characterized by the abundance of these algae throughout the year. Determination of Pb, Mn and Zn was carried out by graphite furnace atomic absorption spectrometer while Fe by flame atomic absorption spectrometer (using the Thermo Scientific ICE 3300 AA Spectrometer). An evaluation of the degree of eutrophication is made through the physicochemical study of 31 samples in the surface water. The results underline that Korba is an eutrophic lagoon. The heavy metal concentrations in the water samples decreased in the sequence of Fe >Zn > Mn > Pb, while in Chaetomorpha Linium, Enteromorpha intestinalis and sediment exhibited the same pattern across the sites: Fe >Mn> Zn >Pb. The results show that metal accumulation capacity in both macro-algae varies according to the season and depends on the species. By comparison with other studies in the world, the levels found in the algae of Korba lagoon are relatively high except Mn. Chaetomorpha Linium could be used as an excellent indicator for heavy metals accumulation in Korba lagoon

    PHP115 Preliminary Analysis of the Unwritten Decision Rules Behind the French Transparency Commission'S Assessment of Drugs

    Get PDF

    Toxicity and neurophysiological impacts of three plant-derived essential oils against the vineyard mealybug Planococcus ficus

    Get PDF
    Many natural products are able to control pests and can be used as alternatives for chemical treatments. Plant essential oils (EOs) have been found to exhibit some biological activity against many insects including mealybugs. This study aimed at studying the insecticidal activity and behavioral and neurophysiological impacts of three plant essential oils against the vine mealybug Planococcus ficus. The topical and fumigant toxicity of Cymbopogon citratus, Mentha piperita, and Pelargonium graveolens essential oils was evaluated against P. ficus adults. The chemical composition analysis of EOs by gas chromatographic-mass spectrometry (GC-MS) revealed citronellal (31.69 %), menthol (73.78 %), and geraniol (39.6%), as major components, respectively. Bioassays of EOs against vine mealybug adults through fumigation toxicity method revealed lethal concentrations LC50 values of 17.01, 26.27 and 24.52 µL·L-1 air for C. citratus, M. piperita, and P. graveolens, respectively. In both topical and fumigant bioassays, essential oil from C. citratus was the most active altering the behavioral response of treated mealybugs which becomes hyperactive and disoriented. EOs induced general stress in P. ficus adults, as evidenced by oxidative stress biomarker analyses. Biochemical analyses showed that the EOs exposure reduced the activity of acetylcholinesterase and significantly induced the glutathione S-transferases and Malondialdehydes accumulation in the vine mealybug tissues. Mortality caused by lemongrass EO positively correlated with the significant decrease in the AChE activity indicating lethal neurological effects. These toxicity bioassays and neurological impact findings provide new informations for formulating effective essential oil based-insecticides to control P. ficus in the framework of integrated pest management programs

    ER Stress Inhibits Liver Fatty Acid Oxidation while Unmitigated Stress Leads to Anorexia-Induced Lipolysis and Both Liver and Kidney Steatosis

    Get PDF
    The unfolded protein response (UPR), induced by endoplasmic reticulum (ER) stress, regulates the expression of factors that restore protein folding homeostasis. However, in the liver and kidney, ER stress also leads to lipid accumulation, accompanied at least in the liver by transcriptional suppression of metabolic genes. The mechanisms of this accumulation, including which pathways contribute to the phenotype in each organ, are unclear. We combined gene expression profiling, biochemical assays, and untargeted lipidomics to understand the basis of stress-dependent lipid accumulation, taking advantage of enhanced hepatic and renal steatosis in mice lacking the ER stress sensor ATF6α. We found that impaired fatty acid oxidation contributed to the early development of steatosis in the liver but not the kidney, while anorexia-induced lipolysis promoted late triglyceride and free fatty acid accumulation in both organs. These findings provide evidence for both direct and indirect regulation of peripheral metabolism by ER stress

    Metabolic Control by S6 Kinases Depends on Dietary Lipids

    Get PDF
    Targeted deletion of S6 kinase (S6K) 1 in mice leads to higher energy expenditure and improved glucose metabolism. However, the molecular mechanisms controlling these effects remain to be fully elucidated. Here, we analyze the potential role of dietary lipids in regulating the mTORC1/S6K system. Analysis of S6K phosphorylation in vivo and in vitro showed that dietary lipids activate S6K, and this effect is not dependent upon amino acids. Comparison of male mice lacking S6K1 and 2 (S6K-dko) with wt controls showed that S6K-dko mice are protected against obesity and glucose intolerance induced by a high-fat diet. S6K-dko mice fed a high-fat diet had increased energy expenditure, improved glucose tolerance, lower fat mass gain, and changes in markers of lipid metabolism. Importantly, however, these metabolic phenotypes were dependent upon dietary lipids, with no such effects observed in S6K-dko mice fed a fat-free diet. These changes appear to be mediated via modulation of cellular metabolism in skeletal muscle, as shown by the expression of genes involved in energy metabolism. Taken together, our results suggest that the metabolic functions of S6K in vivo play a key role as a molecular interface connecting dietary lipids to the endogenous control of energy metabolism

    BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions

    Get PDF
    Thermogenesis in brown adipose tissue (BAT) is fundamental to energy balance and is also relevant for humans. Bone morphogenetic proteins (BMPs) regulate adipogenesis, and, here, we describe a role for BMP8B in the direct regulation of thermogenesis. BMP8B is induced by nutritional and thermogenic factors in mature BAT, increasing the response to noradrenaline through enhanced p38MAPK/CREB signaling and increased lipase activity. Bmp8b(-/-) mice exhibit impaired thermogenesis and reduced metabolic rate, causing weight gain despite hypophagia. BMP8B is also expressed in the hypothalamus, and Bmp8b(-/-) mice display altered neuropeptide levels and reduced phosphorylation of AMP-activated protein kinase (AMPK), indicating an anorexigenic state. Central BMP8B treatment increased sympathetic activation of BAT, dependent on the status of AMPK in key hypothalamic nuclei. Our results indicate that BMP8B is a thermogenic protein that regulates energy balance in partnership with hypothalamic AMPK. BMP8B may offer a mechanism to specifically increase energy dissipation by BAT

    Validation of the LUMIPULSE automated immunoassay for the measurement of core AD biomarkers in cerebrospinal fluid

    Get PDF
    OBJECTIVES: The core cerebrospinal fluid (CSF) biomarkers; total tau (tTau), phospho-tau (pTau), amyloid β 1-42 (Aβ 1-42), and the Aβ 1-42/Aβ 1-40 ratio have transformed Alzheimer's disease (AD) research and are today increasingly used in clinical routine laboratories as diagnostic tools. Fully automated immunoassay instruments with ready-to-use assay kits and calibrators has simplified their analysis and improved reproducibility of measurements. We evaluated the analytical performance of the fully automated immunoassay instrument LUMIPULSE G (Fujirebio) for measurement of the four core AD CSF biomarkers and determined cutpoints for AD diagnosis. METHODS: Comparison of the LUMIPULSE G assays was performed with the established INNOTEST ELISAs (Fujirebio) for hTau Ag, pTau 181, β-amyloid 1-42, and with V-PLEX Plus Aβ Peptide Panel 1 (6E10) (Meso Scale Discovery) for Aβ 1-42/Aβ 1-40, as well as with a LC-MS reference method for Aβ 1-42. Intra- and inter-laboratory reproducibility was evaluated for all assays. Clinical cutpoints for Aβ 1-42, tTau, and pTau was determined by analysis of three cohorts of clinically diagnosed patients, comprising 651 CSF samples. For the Aβ 1-42/Aβ 1-40 ratio, the cutpoint was determined by mixture model analysis of 2,782 CSF samples. RESULTS: The LUMIPULSE G assays showed strong correlation to all other immunoassays (r>0.93 for all assays). The repeatability (intra-laboratory) CVs ranged between 2.0 and 5.6%, with the highest variation observed for β-amyloid 1-40. The reproducibility (inter-laboratory) CVs ranged between 2.1 and 6.5%, with the highest variation observed for β-amyloid 1-42. The clinical cutpoints for AD were determined to be 409 ng/L for total tau, 50.2 ng/L for pTau 181, 526 ng/L for β-amyloid 1-42, and 0.072 for the Aβ 1-42/Aβ 1-40 ratio. CONCLUSIONS: Our results suggest that the LUMIPULSE G assays for the CSF AD biomarkers are fit for purpose in clinical laboratory practice. Further, they corroborate earlier presented reference limits for the biomarkers
    corecore