99 research outputs found

    A pathway-driven predictive model of tramadol pharmacogenetics

    Get PDF
    Predicting metabolizer phenotype (MP) is typically performed using data from a single gene. Cytochrome p450 family 2 subfamily D polypeptide 6 (CYP2D6) is considered the primary gene for predicting MP in reference to approximately 30% of marketed drugs and endogenous toxins. CYP2D6 predictions have proven clinically effective but also have well-documented inaccuracies due to relatively high genotype-phenotype discordance in certain populations. Herein, a pathway-driven predictive model employs genetic data from uridine diphosphate glucuronosyltransferase, family 1, polypeptide B7 (UGT2B7), adenosine triphosphate (ATP)-binding cassette, subfamily B, number 1 (ABCB1), opioid receptor mu 1 (OPRM1), and catechol-O-methyltransferase (COMT) to predict the tramadol to primary metabolite ratio (T:M1) and the resulting toxicologically inferred MP (t-MP). These data were then combined with CYP2D6 data to evaluate performance of a fully combinatorial model relative to CYP2D6 alone. These data identify UGT2B7 as a potentially significant explanatory marker for T:M1 variability in a population of tramadol-exposed individuals of Finnish ancestry. Supervised machine learning and feature selection were used to demonstrate that a set of 16 loci from 5 genes can predict t-MP with over 90% accuracy, depending on t-MP category and algorithm, which was significantly greater than predictions made by CYP2D6 alone.Peer reviewe

    Participatory planning and decision support for ecosystem based fisheries management of the west coast of Scotland

    Get PDF
    Mixed fisheries and the marine ecosystems that sustain them are complex entities and involve multiple and potentially conflicting management objectives and stakeholder interests. The presence of multiple trade-offs complicates the identification of strategies that satisfy various policy requirements while being acceptable to affected stakeholder groups. This creates a demand for tools and processes that support learning, cooperation and planning. We report on the application of decision support methodology used in combination with a co-creation approach to scenario based planning for the demersal fisheries of the West coast of Scotland. These fisheries face significant challenges, such as the depletion of key stocks and increased predation by seals. In collaboration with stakeholders we identified generic management alternatives and indicators to evaluate their performance in a structured evaluation using Multi Criteria Analysis. We identify the potential and limitations of this approach and suggest how it can contribute to Ecosystem Based Fisheries Management (EBFM). This approach does not provide tactical management advice, but stimulates learning and creates an opportunity for stakeholders to search for strategic and policy relevant solutions in an EBFM context.Peer reviewe

    Enhancement of adhesion and promotion of osteogenic differentiation of human adipose stem cells by poled electroactive poly(vinylidene fluoride)

    Get PDF
    Poly(vinylidene fluoride) (PVDF) is a biocompatible material with excellent electroactive properties. Non-electroactive α-PVDF and electroactive ÎČ-PVDF were used to investigate the substrate polarization and polarity influence on the focal adhesion size and number as well as on human adipose stem cells (hASCs) differentiation. hASCs were cultured on different PVDF surfaces adsorbed with fibronectin and focal adhesion size and number, total adhesion area, cell size, cell aspect ratio and focal adhesion density were estimated using cells expressing EGFP-vinculin. Osteogenic differentiation was also determined using a quantitative alkaline phosphatase assay. The surface charge of the poled PVDF films (positive or negative) influenced the hydrophobicity of the samples, leading to variations in the conformation of adsorbed extracellular matrix (ECM) proteins, which ultimately modulated the stem cell adhesion on the films and induced their osteogenic differentiation.The study was supported financially by the Academy of Finland (136288, 140978 and 256931), the Sigrid JusĂ©lius Foundation, the Pirkanmaa Hospital District and the Finnish Funding Agency for Technology and Innovation (TEKES). This study was also supported by FEDER through the COMPETE Program, by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Project PEST- C/FIS/UI607/2011 and by projects NANO/NMed-SD/0156/2007 and PTDC/CTM NAN/112574/2009. The autors also thank the project Matepro – Optimizing Materials and Processes”, ref. NORTE-07-0124-FEDER-000037”, co-funded by the “Programa Operacional Regional do Norte” (ON.2 – O Novo Norte), under the “Quadro de ReferĂȘncia EstratĂ©gico Nacional” (QREN), through the “Fundo Europeu de Desenvolvimento Regional” (FEDER). V.S. and C.R. thank the FCT for the SFRH/BPD/63148/2009 and SFRH/BPD/90870/2012 grants, respectively

    Surface Modification of Bioresorbable Phosphate Glasses for Controlled Protein Adsorption

    Get PDF
    The traditional silicate bioactive glasses exhibit poor thermal processability, which inhibits fiber drawing or sintering into scaffolds. The composition of the silicate glasses has been modified to enable hot processing. However, the hot forming ability is generally at the expense of bioactivity. Metaphosphate glasses, on the other hand, possess excellent thermal processability, congruent dissolution, and a tailorable degradation rate. However, due to the layer-by-layer dissolution mechanism, cells do not attach to the material surface. Furthermore, the congruent dissolution leads to a low density of OH groups forming on the glass surface, limiting the adsorption of proteins. It is well regarded that the initial step of protein adsorption is critical as the cells interact with this protein layer, rather than the biomaterial itself. In this paper, we explore the possibility of improving protein adsorption on the surface of phosphate glasses through a variety of surface treatments, such as washing the glass surface in acidic (pH 5), neutral, and basic (pH 9) buffer solutions followed or not by a treatment with (3-aminopropyl)triethoxysilane (APTS). The impact of these surface treatments on the surface chemistry (contact angle, ζ-potential) and glass structure (FTIR) was assessed. In this manuscript, we demonstrate that understanding of the material surface chemistry enables to selectively improve the adsorption of albumin and fibronectin (used as model proteins). Furthermore, in this study, well-known silicate bioactive glasses (i.e., S53P4 and 13-93) were used as controls. While surface treatments clearly improved proteins adsorption on the surface of both silicate and phosphate glasses, it is of interest to note that protein adsorption on phosphate glasses was drastically improved to reach similar protein grafting ability to the silicate bioactive glasses. Overall, this study demonstrates that the limited cell/phosphate glass biological response can easily be overcome through deep understanding and control of the glass surface chemistry

    The influence of learner characteristics on degree and type of participation in a CSCL environment

    Get PDF
    Computer-Supported Collaborative Learning (CSCL) is often presented as a promising learning method. However, it is also facing some new challenges. Apart from answering the question of whether or not working with CSCL generates satisfying learning outcomes, it is important to determine whether or not all participants profit from collaboration, with the computer as a means of communication. This paper describes the implementation and effects of an experimental program in 5 classes with a total of 120 students in elementary education who, in groups of four, engaged in Knowledge Forum discussion tasks on the subject of healthy eating. The study explores whether or not differences occur in the participation of students who differ in gender, sociocultural background and ability, and whether or not computer skills, computer attitudes, comprehensive reading scores and popularity with classmates are related to student participation. Students’ participation in this CSCL environment appears to be dependent on a number of learner characteristics. Girls contribute more words to the discussions than boys do and are more dependent on their computer skills in this production. Students who are good at comprehensive reading also contribute more words. Popularity among classmates appears to influence the degree of participation further. We also found indications that students with immigrant parents write fewer contributions than those whose parents are not immigrants

    The F1 loop of the talin head domain acts as a gatekeeper in integrin activation and clustering

    Get PDF
    Integrin activation and clustering by talin are early steps of cell adhesion. Membrane-bound talin head domain and kindlin bind to the beta integrin cytoplasmic tail, cooperating to activate the heterodimeric integrin, and the talin head domain induces integrin clustering in the presence of Mn2+. Here we show that kindlin-1 can replace Mn2+ to mediate beta 3 integrin clustering induced by the talin head, but not that induced by the F2-F3 fragment of talin. Integrin clustering mediated by kindlin-1 and the talin head was lost upon deletion of the flexible loop within the talin head F1 subdomain. Further mutagenesis identified hydrophobic and acidic motifs in the F1 loop responsible for beta 3 integrin clustering. Modeling, computational and cysteine crosslinking studies showed direct and catalytic interactions of the acidic F1 loop motif with the juxtamembrane domains of alpha- and beta 3-integrins, in order to activate the beta 3 integrin heterodimer, further detailing the mechanism by which the talin-kindlin complex activates and clusters integrins. Moreover, the F1 loop interaction with the beta 3 integrin tail required the newly identified compact FERM fold of the talin head, which positions the F1 loop next to the inner membrane clasp of the talin-bound integrin heterodimer. This article has an associated First Person interview with the first author of the paper.Peer reviewe

    Recombinant family 3 carbohydrate-binding module as a new additive for enhanced enzymatic saccharification of whole slurry from autohydrolyzed eucalyptus globulus wood

    Get PDF
    By-products resulting from lignocellulosics pretreatment affect the digestibility of resulting whole slurries, but this can be minimized by additives supplementation. In this work, a family 3 carbohydrate-binding module (CBM3), recombinantly produced from Escherichia coli, was used as additive in the enzymatic hydrolysis of the whole slurry from autohydrolyzed Eucalyptus globulus wood (EGW). At the higher dosage used (30 mg/gsolids), CBM3 led to an increase in glucose yield from 75 to 89%. A similar result was obtained for bovine serum albumin (BSA) (11% increase), which has a well-documented additive effect. CBM3 had no effect on the non-productive binding of enzymes, since it could not bind to EGW lignin, while it rapidly bound to cellulose, as shown by fluorescence microscopy. CBM3 is a valid additive for enhanced lignocellulosic saccharification and a valuable alternative to costly additives (e.g. polyethylene glycol) as it can be affordably produced from heterologous bacterium, thus contributing to more cost-efficient biomass valorization bioprocesses.This work was developed under the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte. The research leading to the reported results has received funding from Fundação para a CiĂȘncia e a Tecnologia (FCT) through the project MultiBioreïŹnery (POCI-01–0145-FEDER-016403) and through grants to C. Oliveira (SFRH/BPD/110640/2015) and D. Gomes (SFRH/BD/88623/2012).info:eu-repo/semantics/publishedVersio

    A haemagglutination test for rapid detection of antibodies to SARS-CoV-2

    Get PDF
    Serological detection of antibodies to SARS-CoV-2 is essential for establishing rates of seroconversion in populations, and for seeking evidence for a level of antibody that may be protective against COVID-19 disease. Several high-performance commercial tests have been described, but these require centralised laboratory facilities that are comparatively expensive, and therefore not available universally. Red cell agglutination tests do not require special equipment, are read by eye, have short development times, low cost and can be applied at the Point of Care. Here we describe a quantitative Haemagglutination test (HAT) for the detection of antibodies to the receptor binding domain of the SARS-CoV-2 spike protein. The HAT has a sensitivity of 90% and specificity of 99% for detection of antibodies after a PCR diagnosed infection. We will supply aliquots of the test reagent sufficient for ten thousand test wells free of charge to qualified research groups anywhere in the world

    Assessing the potential for sea-based macroalgae cultivation and its application for nutrient removal in the Baltic Sea

    Get PDF
    Marine eutrophication is a pervasive and growing threat to global sustainability. Macroalgal cultivation is a promising circular economy solution to achieve nutrient reduction and food security. However, the location of production hotspots is not well known. In this paper the production potential of macroalgae of high commercial value was predicted across the Baltic Sea region. In addition, the nutrient limitation within and adjacent to macroalgal farms was investigated to suggest optimal site-specific configuration of farms. The production potential of Saccharina latissima was largely driven by salinity and the highest production yields are expected in the westernmost Baltic Sea areas where salinity is >23. The direct and interactive effects of light availability, temperature, salinity and nutrient concentrations regulated the predicted changes in the production of Ulva intestinalis and Fucus vesiculosus. The western and southern Baltic Sea exhibited the highest farming potential for these species, with promising areas also in the eastern Baltic Sea. Macroalgal farming did not induce significant nutrient limitation. The expected spatial propagation of nutrient limitation caused by macroalgal farming was less than 100–250 m. Higher propagation distances were found in areas of low nutrient and low water exchange (e.g. offshore areas in the Baltic Proper) and smaller distances in areas of high nutrient and high water exchange (e.g. western Baltic Sea and Gulf of Riga). The generated maps provide the most sought-after input to support blue growth initiatives that foster the sustainable development of macroalgal cultivation and reduction of in situ nutrient loads in the Baltic Sea.</p
    • 

    corecore