287 research outputs found

    Aubrite and Impact Melt Enstatite Chondrite Meteorites as Potential Analogs to Mercury

    Get PDF
    The MESSENGER (MErcury Sur-face, Space ENvironment, GEochemistry and Ranging) orbiter measured the Mercurian surface abundances of key rock-forming elements to help us better understand the planet's surface and bulk geochemistry. A major discovery is that the Mercurian surface and interior are characterized by an extremely low oxygen fugacity (O2; Iron-Wstite (IW) -7.3 to IW-2.6. This is supported by low Fe and high S abundances on the surface. This low O2 causes a different elemental partioning from what is observed on Earth. Using surface composition, it was shown that the Mercurian surface mainly consists of normative plagioclase, pyroxene, olivine, and exotic sulfides, such as niningerite ((Mg,Mn, Fe)S) and oldhamite (CaS)

    Stevens-Johnson Syndrome From Combined Allopurinol and Angiotensin-Converting Enzyme Inhibitors: A Narrative Review

    Get PDF
    Stevens-Johnson syndrome (SJS) is a severe and potentially debilitating skin reaction frequently related to medication use. Allopurinol and angiotensin-converting enzyme (ACE) inhibitors are commonly prescribed medications for prevalent health conditions worldwide, and their interaction associated with SJS warrants further investigation. A comprehensive literature search was performed to investigate cases as studies related to SJS occurring in patients with concomitant use of allopurinol and ACE inhibitors. We identified case reports and studies detailing hypersensitivity reactions, including SJS, attributed to a combination of allopurinol and ACE inhibitors. Despite the drug-drug interactions or lack thereof seen in patient populations, there is no definitive evidence of a pharmacokinetic interaction between allopurinol and ACE inhibitors. We were only able to find one case report specifically detailing SJS in a patient on combined ACE inhibitors and allopurinol. While the exact mechanism of the interaction is unclear, those reported cases of severe hypersensitivity reactions suggest a previous history of impaired renal function as a predisposing factor in the development of SJS. The potential risk of SJS with coadministration of ACE inhibitors and allopurinol is a drug-drug interaction that physicians should be aware of. This topic requires additional attention to determine if this drug combination should be avoided entirely in certain patients

    IL23 and TGF-ß diminish macrophage associated metastasis in pancreatic carcinoma

    Get PDF
    Abstract The precise role of tumor associated macrophages remains unclear in pancreatic ductal adenocarcinoma (PDAC) while TGF-ß has an unclear role in metastases formation. In order to understand the role of IL23, an interleukin associated with macrophage polarization, we investigated IL23 in the context of TGF-ß expression in PDAC. We hypothesized that IL23 expression is associated with metastatic development and survival in PDAC. We investigated IL23 and TGF-ß protein expression on resected PDAC patient tumor sections who were divided into short-term (30 months) survivors. Panc-1 cells treated with IL23, TGF-ß, macrophages, or combinations thereof, were orthotopically implanted into NSG mice. Patients in the long-term survivor group had higher IL23 protein expression (P = 0.01). IL23 expression was linearly correlated with TGF-ß expression in patients in the short-term survivor group (P = 0.038). Macrophages induce a higher rate of PDAC metastasis in the mouse model (P = 0.02), which is abrogated by IL23 and TGF-ß treatment (P < 0.001). Macrophages serve a critical role in PDAC tumor growth and metastasis. TGF-ß contributes to a less tumorigenic TME through regulation of macrophages. Macrophages increases PDAC primary tumor growth and metastases formation while combined IL23 and TGF-ß pre-treatment diminishes these processes

    The impact of diabetes mellitus on survival following resection and adjuvant chemotherapy for pancreatic cancer

    Get PDF
    BACKGROUND: Diabetes mellitus is frequently observed in pancreatic cancer patients and is both a risk factor and an early manifestation of the disease. METHODS: We analysed the prognostic impact of diabetes on the outcome of pancreatic cancer following resection and adjuvant chemotherapy using individual patient data from three European Study Group for Pancreatic Cancer randomised controlled trials. Analyses were carried out to assess the association between clinical characteristics and the presence of preoperative diabetes, as well as the effect of diabetic status on overall survival. RESULTS: In total, 1105 patients were included in the analysis, of whom 257 (23%) had confirmed diabetes and 848 (77%) did not. Median (95% confidence interval (CI)) unadjusted overall survival in non-diabetic patients was 22.3 (20.8–24.1) months compared with 18.8 (16.9–22.1) months for diabetic patients (P=0.24). Diabetic patients were older, had increased weight and more co-morbidities. Following adjustment, multivariable analysis demonstrated that diabetic patients had an increased risk of death (hazard ratio: 1.19 (95% CI 1.01, 1.40), P=0.034). Maximum tumour size of diabetic patients was larger at randomisation (33.6 vs 29.7 mm, P=0.026). CONCLUSIONS: Diabetes mellitus was associated with increased tumour size and reduced survival following pancreatic cancer resection and adjuvant chemotherapy

    Glycerol Hypersensitivity in a Drosophila Model for Glycerol Kinase Deficiency Is Affected by Mutations in Eye Pigmentation Genes

    Get PDF
    Glycerol kinase plays a critical role in metabolism by converting glycerol to glycerol 3-phosphate in an ATP dependent reaction. In humans, glycerol kinase deficiency results in a wide range of phenotypic variability; patients can have severe metabolic and CNS abnormalities, while others possess hyperglycerolemia and glyceroluria with no other apparent phenotype. In an effort to help understand the pathogenic mechanisms underlying the phenotypic variation, we have created a Drosophila model for glycerol kinase deficiency by RNAi targeting of dGyk (CG18374) and dGK (CG7995). As expected, RNAi flies have reduced glycerol kinase RNA expression, reduced phosphorylation activity and elevated glycerol levels. Further investigation revealed these flies to be hypersensitive to fly food supplemented with glycerol. Due to the hygroscopic nature of glycerol, we predict glycerol hypersensitivity is a result of greater susceptibility to desiccation, suggesting glycerol kinase to play an important role in desiccation resistance in insects. To evaluate a role for genetic modifier loci in determining severity of the glycerol hypersensitivity observed in knockdown flies, we performed a preliminary screen of lethal transposon insertion mutant flies using a glycerol hypersensitive survivorship assay. We demonstrate that this type of screen can identify both enhancer and suppressor genetic loci of glycerol hypersensitivity. Furthermore, we found that the glycerol hypersensitivity phenotype can be enhanced or suppressed by null mutations in eye pigmentation genes. Taken together, our data suggest proteins encoded by eye pigmentation genes play an important role in desiccation resistance and that eye pigmentation genes are strong modifiers of the glycerol hypersensitive phenotype identified in our Drosophila model for glycerol kinase deficiency

    Genomic and molecular analyses identify molecular subtypes of pancreatic cancer recurrence

    Get PDF
    Pancreatic cancer (PC) remains a highly lethal malignancy, and most patients with localized disease that undergo surgical resection still succumb to recurrent disease. Pattern of recurrence after pancreatectomy is heterogenous, with some studies illustrating that site of recurrence can be associated with prognosis.1 Another study suggested that tumors that develop local and distant recurrence can be regarded as a homogenous disease with similar outcomes.2 Here we investigate novel molecular determinants of recurrence pattern after pancreatectomy for PC

    Determining PTEN Functional Status by Network Component Deduced Transcription Factor Activities

    Get PDF
    PTEN-controlled PI3K-AKT-mTOR pathway represents one of the most deregulated signaling pathways in human cancers. With many small molecule inhibitors that target PI3K-AKT-mTOR pathway being exploited clinically, sensitive and reliable ways of stratifying patients according to their PTEN functional status and determining treatment outcomes are urgently needed. Heterogeneous loss of PTEN is commonly associated with human cancers and yet PTEN can also be regulated on epigenetic, transcriptional or post-translational levels, which makes the use of simple protein or gene expression-based analyses in determining PTEN status less accurate. In this study, we used network component analysis to identify 20 transcription factors (TFs) whose activities deduced from their target gene expressions were immediately altered upon the re-expression of PTEN in a PTEN-inducible system. Interestingly, PTEN controls the activities (TFA) rather than the expression levels of majority of these TFs and these PTEN-controlled TFAs are substantially altered in prostate cancer mouse models. Importantly, the activities of these TFs can be used to predict PTEN status in human prostate, breast and brain tumor samples with enhanced reliability when compared to straightforward IHC-based or expression-based analysis. Furthermore, our analysis indicates that unique sets of PTEN-controlled TFAs significantly contribute to specific tumor types. Together, our findings reveal that TFAs may be used as “signatures” for predicting PTEN functional status and elucidate the transcriptional architectures underlying human cancers caused by PTEN loss
    corecore