1 The Impact of Diabetes Mellitus on Survival Following Resection and Adjuvant Chemotherapy for

- 2 Pancreatic Cancer
- 3

4 Authors

- 5 Jörg Kleeff*, M.D., Eithne Costello*, Ph.D., Richard Jackson, Ph.D., Chris Halloran M.D., William
- 6 Greenhalf Ph.D., Paula Ghaneh, M.D., Richard F. Lamb, Ph.D., Markus M. Lerch, M.D., Julia Mayerle,
- 7 M.D., Daniel Palmer, M.D., Trevor Cox, PhD., Charlotte L. Rawcliffe, MSc., Oliver Strobel, M.D.,
- 8 Markus W. Büchler, M.D., John P. Neoptolemos, M.D., for the European Study Group for Pancreatic
- 9 Cancer.
- 10 *Joint first author contributions.
- 11

12 Addressees of Contributors

- 13 Liverpool Cancer Research U.K. Cancer Trials Unit, Liverpool Cancer Research U.K. Centre, University
- 14 of Liverpool, Liverpool, United Kingdom and the NIHR Pancreas Biomedical Research Unit, University
- 15 of Liverpool, Liverpool, L69 3GA (J.K., E.C., R.J., C.H., W.G., P.G., D.P., T.C., R.F.L., C.L.R., J.P.N.)
- 16 Department of Medicine A, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany (M.M.L.,
- 17 J.M.)
- 18 Department of Surgery, University of Heidelberg, Heidelberg, Germany (O.S., M.W.B)
- 19
- 20 Corresponding Author
- 21 Jörg Kleeff, MD, FACS
- 22 NIHR Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine,
- 23 University of Liverpool, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Duncan
- 24 Building, Daulby Street, Liverpool L69 3GA, UK
- 25 Tel no: +44 151 706 2000, Fax no: +44 151 706 5828
- 26 E-mail: Kleeff@liverpool.ac.uk

	British Journal of Cancer 19 July 2016,	 Gelöscht: 19 July 201618 July 201604 July 2016
27	Abstract word count: 197/200	
28	Total word count: 3086/5000	Gelöscht: 2806
29	Number of Tables/Figures: 4/2	Formatiert: Hervorheben
30		
31	Running title: Diabetes and pancreatic cancer survival	
32		
33	Author Contributions:	
34	Study concept and design: JK, EC, JPN; acquisition of data: CH, WG, PG, RFL, MML, JM, DP, OS, MWB;	
35	analysis and interpretation of data: JK, EC, RJ, MML, JM, OS, MWB, JPN; drafting of the manuscript:	
36	JK, EC, JPN; critical revision of the manuscript for important intellectual content: all; administrative	
37	support: CLR; statistical analysis: RJ, TC; study supervision: JK, JPN.	
38		
39	Disclosures: All authors declare that there are no potential conflicts (financial, professional, or	
40	personal) that are relevant to the manuscript.	
41		
42	Research Support acknowledgement:	
43	The study was supported by Cancer Research UK; JPN is a National Institutes of Health Senior	
44	Investigator.	
45		
46		

I

19 July 2016

Gelöscht: 19 July 201618 July 201604 July 2016

48 ABSTRACT

I

49 Background. Diabetes mellitus is frequently observed in pancreatic cancer patients and is both a risk

50 factor and an early manifestation of the disease.

51 Methods. We analyzed the prognostic impact of diabetes on the outcome of pancreatic cancer

52 following resection and adjuvant chemotherapy using individual patient data from three European

53 Study Group for Pancreatic Cancer (ESPAC) randomized controlled trials. Analyses were carried out

54 to assess the association between clinical characteristics and the presence of pre-operative diabetes

as well as the effect of diabetic status on overall survival.

56 **Results.** 1105 patients were included in the analysis, of whom 257 (23%) had confirmed diabetes

57 and 848 (77%) did not. Median (95% confidence interval) unadjusted overall survival in non-diabetic

58 patients was 22.3 (20.8 - 24.1) months compared to 18.8 (16.9 - 22.1) months for diabetic patients

59 (p=0.24). Diabetic patients were older, had increased weight and more co-morbidities. Following

60 adjustment, multivariable analysis demonstrated that diabetic patients had an increased risk of

61 death (HR: 1.19 (95%Cl 1.01, 1.40), P=0.034). Maximum tumor size (MTS) of diabetic patients was

62 larger at randomization (33.6mm vs 29.7mm, p=0.026).

63 Conclusions. Diabetes mellitus was associated with increased tumor size and reduced survival

64 following pancreatic cancer resection and adjuvant chemotherapy.

65

66 Word count: 197/200

67

68 **KEYWORDS:** pancreas cancer, diabetes mellitus, prognosis, resection, adjuvant therapy

69

Ι	British Journal of Cancer 19 July 20	16	Gelöscht: 19 July 201618 July 201604 July 2016
70	INTRODUCTION		
71	Pancreatic cancer is currently the fourth most common cause of cancer related mortality in		
72	developed countries (Siegel et al, 2015) and is predicted to be the second leading cause within the		
73	next decade (Rahib et al, 2014). Most patients are diagnosed at an advanced stage with distant		
74	metastasis and/or locally advanced unresectable tumors (Hidalgo et al, 2015). Together with limite	d	
75	and often ineffective treatment options, this results in an overall low 5-year survival rate of less the	an	 Gelöscht: 5
76	7%. Surgery, the only chance for cure, can be offered to only 15-20% of patients resulting in		
77	approximately 20% <u>5-y</u> ear survival rates (Kleeff <i>et al,</i> 2016).		 Gelöscht: 5
78			
79	Risk factors that have been identified for pancreatic cancer include tobacco smoking, diabetes		
80	mellitus, and others (Bosetti et al, 2012; Kleeff et al, 2016). Several studies have established that		
81	diabetes mellitus has a higher prevalence in patients with pancreatic cancer than other cancers or		
82	control subjects especially in patients with a more recent diagnosis (Aggarwal et al, 2013; Chari et a	al,	
83	2008; Pannala et al, 2008). Systematic reviews and meta-analyses have confirmed that diabetes is a	9	
84	risk factor for pancreatic cancer with risk ratios of around 1.8-2.1 (Ansary-Moghaddam et al, 2006;		
85	Ben et al, 2011; Huxley et al, 2005; Stevens et al, 2007). The risk is higher with recent onset diabete	es	
86	(Ben et al, 2011; Calle et al, 1998; Huxley et al, 2005), possibly as an early manifestation of pancrea	tic	
87	cancer. In contrast to an earlier report (Gullo et al, 1994) long standing diabetes mellitus (> 5 years)	
88	has also been shown to have an increased risk of pancreatic cancer of 1.5-2.0 (Everhart & Wright,		
89	1995; Huxley et al, 2005; Li et al, 2011). There is still an excess risk of pancreatic cancer even with a		
90	long standing diagnosis of diabetes of 20 years or more but at a lower level with an odds ratio of 1.	3	
91	(Bosetti et al, 2014). There is some evidence that diabetes mellitus may resolve after pancreatic		
92	cancer resection in a proportion of new-onset cases, whereas it remains unchanged in patients wit	h	
93	long standing diabetes (Pannala et al, 2008; Permert et al, 1993), which appears to be specific for		
94	pancreatic cancer, as resection for chronic pancreatitis does not improve pre-existing diabetes		
95	(Litwin et al, 2008). While diabetes mellitus increases the risk of pancreatic cancer, there is also		

Page 4 of 17

1

19 July 2016

Gelöscht: 19 July 201618 July 201604 July 2016

98	evidence that pancreatic cancer itself induces diabetes (type 3c). Potential mechanisms include the	
99	release of adrenomedullin, a potential mediator of beta cell dysfunction (Aggarwal et al, 2012) or by	
100	beta cell apoptosis induced by pancreatic stellate cells (Kikuta et al, 2013). Thus, diabetes is both	
101	causal and consequential to pancreatic cancer, the latter offering a window for screening, early	
102	tumor detection and therapy (Jenkinson et al, 2015).	
103	The survival of diabetic cancer patients compared with normoglycemic individuals across all cancer	
104	types seems to be less with risk ratios of around 1.4 (Barone et al, 2008; van de Poll-Franse et al,	
105	2007), but not for pancreatic cancer, possibly because of the limited cohort size (Park et al, 2006).	
106	Analysis of diabetes as covariate on survival outcome in advanced pancreatic is difficult due to the	
107	large number of variables and the very short survival. Preoperative diabetes found in 275 (56.3%) of	
108	488 patients with pancreatic cancer that had resection also did not influence survival although tumor	
109	size was significantly larger (mean=36 mm) compared to the non-diabetics (mean=33 mm) (Hart et	
110	al, 2014). In another study, 93 (45.4%) of 209 patients with pancreatic cancer and preoperative	
111	diabetes had a median survival of 15 months, which was less compared to 17 months in non-	
112	diabetics with a hazard ratio of 1.55 (Chu et al, 2010). The risk of survival was even less in new onset	
113	diabetics (<2 years duration) compared to the longstanding diabetics with a hazard ratio of 1.75 (Chu	
114	et al, 2010). Diabetics also had a larger tumor size (mean = 38 mm) compared to non-diabetics	
115	(mean= 32 mm).	
116		
117	Thus, the prognostic effect of diabetes mellitus in patients with pancreatic cancer is uncertain. The	Gelöscht: Thus
118	purpose of this study was to analyze the prognostic effect of clinically revealed diabetes on long term	
119	survival in pancreatic cancer patients following resection and adjuvant chemotherapy from three	
120	randomized controlled trials of the European Study Group for Pancreatic Cancer (ESPAC) trials,	
121	namely ESPAC-1Plus, ESPAC-1, and ESPAC-3 (Neoptolemos et al, 2001; Neoptolemos et al, 2010;	
122	Neoptolemos <i>et al</i> , 2004; Neoptolemos <i>et al</i> , 2009),	Gelöscht: using individual patient data
123		

Page 5 of 17

<u>19 July 2016,</u>

Gelöscht: 19 July 201618 July 201604 July 2016

126 METHODS

I

127 Patients

- 128 Patients with pancreatic ductal adenocarcinoma were identified from the ESPAC-1Plus, ESPAC-1 and
- 129 ESPAC-3 trials (Neoptolemos et al, 2001; Neoptolemos et al, 2010; Neoptolemos et al, 2004;
- 130 Neoptolemos et al, 2009). These were open label, international, randomized phase III studies. In
- 131 order to improve homogeneity patients randomized to receive chemotherapy only were selected for
- 132 this analysis. Patients were excluded if they had been randomized to either chemoradiation or to
- 133 observation. There were 541 patients randomized together in ESPAC-1Plus and ESPAC-1 of whom
- 134 164 patients were randomized to chemotherapy alone. There were 25 (15%) of these 164 patients
- 135 with diabetes. There were 941 patients with ductal adenocarcinoma randomized in ESPAC-3 to either
- 136 of two adjuvant chemotherapy regimens. There were 232 (25%) of these 941 patients with diabetes.
- 137 The diabetes mellitus status was prospectively obtained by the principal investigator at each of the
- referring sites according to the best available clinical evidence and guidelines at that time and site,
- 139 and categorized as no diabetes, insulin-dependent or non-insulin dependent diabetes. Glucose
- 140 tolerance testing or fasting glucose measurements were not routinely carried out, and data regarding
- duration of diabetes were not recorded (Neoptolemos et al, 2001; Neoptolemos et al, 2010;
- 142 Neoptolemos et al, 2004; Neoptolemos et al, 2009).

143

144 Statistical Analysis

- 145 Clinical characteristics were compared across diabetic groups using two-sided Mann-Whitney U
- 146 statistics for continuous characteristics and the Chi-Squared test for categorical variables.
- 147 Multivariable regression using logistic regression was used to assess the relationship between clinical
- 148 characteristics and diabetic status. The primary outcome of interest was overall survival measured as
- 149 the time from surgery until death by any cause. Survival estimates are calculated using the method of
- 150 Kaplan and Meier (Kaplan & Meier, 1958) and compared across biological groups using Log-Rank
- 151 tests (Peto & Peto, 1972). Median follow-up is calculated using the reverse Kaplan Meier approach

Page 6 of 17

Gelöscht: Diabetes mellitus was prospectively obtained by clinical status

1	British Journal of Cancer 19 July 2016,	_	Gelöscht: 19
I			Gelosciit: 19
154	(Schemper & Smith, 1996). Multivariable analyses are carried out using Cox proportional hazards		Gelöscht: Pro
155	models (Cox, 1972) and are constructed using forward selection based on Akaike's Information		
156	Criterion (AIC). The effects for trial and country are both included as stratification factors, Only		Gelöscht: eff
157	covariated with a univariate significance of P<0.25 are considered for selection in the multivariable		
158	model. Assessment of maximum tumor size carried out using a log(x+1) transformation on		
159	continuous covariate. Proportional hazards assumptions are evaluated via assessment of Schoenfelds		Gelöscht: Po
160	residuals (Schoenfeld, 1982), Further sensitivity analyses are carried out using a landmark method,		Gelöscht: ass Gelöscht:
161	excluding patients who died within 30, 60, and 90 days of randomisation. All analyses were carried		Gelöscht: ses
162	out using R (v 3.2.1) (R-Development-Core-Team, 2011) on an intention to treat basis, retaining		Gelöscht: 6, 9
163	patients in their randomized treatment groups and including protocol violators and ineligible		
164	patients. A two-sided significance of P<0.05 was used throughout.		
165			
166	RESULTS		
167	Clinical and Pathological Variables		
168	A total of 1105 patients were included in the analysis, 164 (15%) patients from the ESPAC-1 studies		
169	and 941 (85%) patients from the ESPAC-3 study. There were 25 (15%) and 232 (25%) diabetics		
170	respectively from these studies. Together there were 257 (23%) patients with clinically revealed		
171	diabetes mellitus and 848 (77%) who were non-diabetic at the point of randomization. Patient		
172	characteristics at baseline and univariate analyses are presented to identify patient characteristics		
173	associated with diabetes (Table 1). Patients with diabetes were significantly older with a median		
174	(interquartile range) age of 65 (57-71) years versus 63 (56-69) years for non-diabetics (p=0.04), and		
175	had an increased median (interquartile range) weight at presentation of 72 (62, 80) kg versus 66 (58,		
176	75) kg for non-diabetics (p<0.001). Diabetic patients were also more likely to have concurrent		
177	medical conditions other than diabetes (64% versus 42%; p<0.001). 146 of 257 (57%) diabetic		
178	patients completed all six cycles of adjuvant therapy, which was not significantly different from the		
179	458 of 848 (54%) non diabetic patients (p=0.47). The mean (sd) maximum tumor size (MTS), was		
180	33, <u>59 (</u> 20.64) mm in diabetic patients and 29.67 (14.53) mm in non-diabetic patients with Page 7 of 17		Gelöscht: 60

Gelöscht: 19 July 201618 July 201604 July 2016

Gelöscht: Proportional

elöscht: effect of trial is included as a frailty term.

	Gelöscht: Porportional
	Gelöscht: assesmment
-	Gelöscht:
	Gelöscht: sesitivity
-	Gelöscht: 6, 9 and 12 months

I	British Journal of Cancer 19 July 2016	 Gelöscht:
189	significantly larger tumors in diabetic patients (p=0.026, MTS compared on the log scale). Diabetic	
190	patients had proportionally larger resections in the form of total pancreatectomy (12%) compared to	
191	non-diabetics (1%; p<0.001) although the distribution of tumor location was not significantly	
192	different between diabetic and non-diabetic patients (p=0.216). There were no significant	
193	preoperative or postoperative differences between insulin dependent and non-insulin dependent	
194	patients. Multivariable analysis identified increased age and increased weight as clinical	
195	characteristics independently associated with pre-operative diabetes (Table 2). Further, increased	
196	maximum tumor size but also a lower proportion of positive lymph nodes, were independently	
197	associated with pre-operative diabetes.	
198		
199	Overall Survival	
200	Eight hundred and sixty two patients (78%) died during the course of both trial sets. The median	
201	(95% confidence interval) overall survival was 21.4 (20.2, 23.4) months. The median (95% confidence	
202	interval) overall survival for non-diabetics was 22.3 (20.8 - 24.1) months compared to 18.8 (16.9 -	
203	22.1) months for diabetic patients. Analysis of the overall survival by diabetic status obtained X ² LR	 Gelöscht:
204	(1DF) = 1.39 (p=0.238)Multivariable model analysis for overall survival identified World Health	Gelöscht:
205	Organization (WHO) performance status and smoking status as independent prognostic clinical	Gelöscht:
206	indicators and resection margin status, tumor differentiation and lymph node involvement as	
207	independent prognostic pathological indicators (Table 3). Following adjustment of other terms,	
208	diabetic status was significantly associated with survival, with diabetic patients having an increased	
209	risk of death (Hazard Ratio: 1.19 (95% confidence interval: 1.01, 1.40), p=0.034), The fitted effect of	Gelöscht:
210	diabetic status is given in Figure 1. Assessment of Schoenfeld residuals did not identify any	
211	prognostic factors, which may be associated with non-proportional hazards.	
212 213	Of the 257 patients who were diabetic, insulin status was missing in two patients. One hundred and	
214	forty four (56%) of these 255 patients were insulin-dependent and the remainder (n=111) were non-	
215	insulin dependent received either oral antidiabetics or were controlled by diet alone. At least 13	
	Page 8 of 17	

-{	Gelöscht: unadjusted
_	Gelöscht:
ų	Gelosciit.
1	Gelöscht: (Figure 1).

Gelöscht: 19 July 201618 July 201604 July 2016

I

19 July 2016

Gelöscht: 19 July 201618 July 201604 July 2016

220	patients were receiving oral antidiabetic therapy (seven taking metformin) but specific information
221	was not available for the remaining 98 non-insulin dependent diabetics. The median (95% confidence
222	interval) overall survival estimates was 18.0 (16.5, 21.1) months for patients who used insulin and
223	20.5 (16.0, 26.6) months for patients who did not use insulin. The unadjusted overall survival by
224	diabetic status was not significant ($X^2_{LR (1DF)}$ = 0.03, p=0.857). The unadjusted overall survival for
225	diabetics in those using insulin versus metformin versus other oral diabetic medication was not
226	significant ($X^2_{LR (2DF)}$ = 0.80, p=0.371). The median (95% confidence interval) overall survival estimates
227	was 18.0 (16.5, 21.1) months for patients who used insulin (n=144) and 22.2 (20.7, 23.9) months for
228	patients who were not diabetic or who were non-insulin dependent (n=959) ($X^2_{LR (IDF)} = 0.4$, p=0.527).
229	In insulin-dependent diabetic patients the median (95% confidence interval) overall survival
230	estimates with a maximum tumor diameter > 30mm was 17.0 (15.2-22.7) months compared to 18.5
231	(15.9-26.1) months for patients a maximum tumor diameter < 30mm (Hazard ratio [95% confidence
232	interval] =0.96 (0.65,1.4); p=0.823). In non-insulin diabetic dependent patients with a maximum
233	tumor diameter > 30mm was 14.6 (9.51-21.9) months compared to 32.0 (22.11-41.4) months for
234	patients a maximum tumor diameter ≤ 30mm (Hazard ratio [95% confidence interval] =1.99 [1.30,
235	3.03]; p<0.001). The overall survival difference was significant ($X^2_{LR (3DF)}$ = 10.37, p=0.016) (Figure 2).
236	A multivariable analysis was carried out of factors independently associated with overall survival
237	specifically in the 257 diabetic patients. Due to the interaction between insulin status and maximum
238	tumor size, we included the latter as a nested effect within insulin status, allowing for separate
239	hazard ratios for insulin dependent and non-dependent groups. This showed that lymph node
240	metastasis remained an independent prognostic factor (Table 4). There was also a significant effect
241	of maximum tumor size for non-insulin dependent patients but not for patients who were insulin-
242	dependent. Landmark analyses, removing patients who died within the first 30, 60 and 90 days
243	respectively showed that the magnitude and direction of all treatment effects remained consistent
244	showing that the effects reported are not overly effected by early deaths. Details are included in
I	

Gelöscht: respectivly Gelöscht: dirrection

Page 9 of 17

I	British Journal of Cancer 19 July 201	6	Gelöscht: 19 July 201618 July 201604 July 2016
247	supplementary table 1. Further to this, assessment of Schoenfeld residuals did not identify any		Gelöscht: supplimentary
248	prognostic factors, which may be associated with non-proportional hazards.		
249	DISCUSSION		
250 251	DISCUSSION		
252	The present study shows that diabetes mellitus is associated with increased tumor size and a small		
253	but significant increased overall risk of death with a hazard ratio of 1.19. There was a significant		
254	effect of maximum tumor size on survival for non-insulin dependent but not for insulin dependent		
255	diabetic patients. Two specific smaller studies also showed increased tumor size with diabetes with		Gelöscht: This is by far the largest study to date on this topic
256	only one of these found a worse prognosis for diabetic patients following tumor resection (Chu et al	,	and relied on clinical data collected in prospectively randomized controlled trials of patients with histological proven ductal adenocarcinoma involving a total of 1105
257	2010; Hart et al, 2014). A meta-analysis of retrospective studies demonstrated worse prognosis in		patients of whom 257 (23%) were diabetic (Neoptolemos <i>et al</i> , 2001; Neoptolemos <i>et al</i> , 2010; Neoptolemos <i>et al</i> , 2004; Neoptolemos <i>et al</i> , 2000)
258	diabetic patients following resection with a hazard ratio of 1.32 (Walter et al, 2014).		Neoptolemos <i>et al,</i> 2009).¶ ¶
259			
260	Taken together, there is now solid evidence that the diabetic state at the time of resection influence	es	
261	outcome. There are several concepts on how diabetes mellitus might impact on prognosis of		
262	pancreatic cancer patients. Patients with long standing type II diabetes exhibit insulin resistance and	I	
263	hypersecretion of insulin (Fisher et al, 1996; Li, 2012). In addition, elevated insulin levels result in		
264	increased bioavailability of IGFs and pancreatic cancer cells highly express high-affinity insulin and		
265	IGF receptors_(Li, 2012). Insulin has been shown to act as a mitogen for pancreatic cancer cells (Ding		
266	et al, 2000; Fisher et al, 1996), and IGF-1 -besides its mitogenic effects, induces angiogenesis and		
267	increases invasion and blocks apoptosis of pancreatic cancer cells, thereby promoting tumor growth		
268	(Li, 2012). In line with this hypothesis, this and two other mentioned studies (Chu et al, 2010; Hart e	t	
269	al, 2014) have shown that diabetic patients have larger tumors at the time of resection. The present		
270	study has also demonstrated that the effects of diabetes on outcome were independent from tumo	r	
271	size, suggesting that other mechanisms are responsible for the worse prognosis of diabetic patients.		
272	It is conceivable that in the adjuvant setting, hyperinsulinemia supports growth of occult pancreatic		

Page 10 of 17

	British Journal of Cancer 19 July 2016	 Gelöscht: 19 July 201618 July 201604 July 2016
282	cancer cells, resulting in worsened prognosis. This might further be augmented by related obesity,	
283	leading to enhanced oxidative stress and inflammatory responses (Li, 2012). Indeed, the median	 Gelöscht: contributing to the increased risk of pancreatic
284	weight of diabetic patients was significantly higher than of non-diabetic patients in the present	cancer
285	analysis.	
286		
287	The association between diabetes and tumor size has been substantiated from three large trials.	
288	Here, we show in addition, that in the group of diabetic patients, tumor size was an important	
289	prognostic indicator in non-insulin dependent, but not in insulin dependent patients. This suggests	
290	that in non-insulin dependent diabetes mellitus, tumor size has a predominant effect on prognosis	
291	whereas insulin dependent diabetes mellitus has a stronger, likely systemic effect on survival. There	
292	is evidence that therapies that increase insulin levels such as exogenous insulin or sulfonylurea could	
293	increase cancer risk. Therapies that decrease insulin levels by decreasing insulin resistance such as	
294	metformin, which also inhibits mTOR activity (Gong et al, 2014), would decrease the risk. Long	
295	duration (\geq 15 years) of oral antidiabetics is associated with a decreased pancreatic cancer risk (OR	 Gelöscht: was
296	0.31), whereas insulin use (<5 years) is associated with increased cancer risk (OR 5.6) (Bosetti et al,	 Gelöscht: was
297	2014). A case control study has shown that diabetic patients on metformin had a significantly	
298	reduced risk of pancreatic cancer compared to patients not on metformin. In contrast, patients on	
299	insulin or insulin secretagogues had a significantly higher risk (Li et al, 2009), whilst a meta-analysis	
300	showed a reduced pancreatic cancer risk for patients on metformin but not sulfonylurea (Soranna et	
301	al, 2012). Another recent meta-analysis could not verify these associations between metformin or	
302	insulin and pancreatic cancer risk (Singh et al, 2013).	
303		
304	A previous study has shown that the effect on survival was especially pronounced for recent onset	
305	diabetes (Chu et al, 2010). Tumors that induce diabetes might constitute a more aggressive subtype.	
306	Alternatively, symptoms of diabetes may mask symptoms of a developing tumor and contribute to	

delayed diagnosis. Our data on this aspect are conflicting, in as much as tumors of diabetic patients

307

I

<u>19 July 2016</u>

Gelöscht: 19 July 201618 July 201604 July 2016

312	were significantly larger, but had significantly less lymph node involvement and did not display	
313	differences in tumor differentiation. Furthermore, diabetic patients might have been treated less	
314	aggressively than non-diabetic patients, as it has been shown for other tumor entities_(van de Poll-	
315	Franse et al, 2007), although there was no difference in surgery and adjuvant therapy (including	
316	completion of therapy) in our series. On the other hand, it is also conceivable that cancer-induced	
317	diabetes results in earlier diagnosis, and thus in potentially better outcome. It could be speculated	
318	that all of these effects might play a role and that our data reflect the sum of these effects.	
319		
320	This study relied on clinical data collected in prospectively randomized controlled trials of patients	
321	with histological proven ductal adenocarcinoma involving a total of 1105 patients of whom 257 (23%)	
322	were diabetic (Neoptolemos et al, 2001; Neoptolemos et al, 2010; Neoptolemos et al, 2004;	
323	Neoptolemos et al, 2009). Diabetes mellitus status was determined by the principal investigator at	
324	each of the referring sites according to the best available clinical evidence and guidelines at that time	
325	and site. This is a limitation of the present study, as no clear definition or test was utilized. Diagnosis	
326	reflected actual clinical care at the different sites and under-diagnosis is a likely issue, as routine use	
327	of specific tests (e.g. glucose tolerance test) was not mandatory within the ESPAC study protocols.	
328	Thus, it is possible that some of the patients were actually diabetic, but had not been formally	
329	assessed prior to therapy.	
330		
331	${ m Jn}$ conclusion, diabetic patients that undergo resection for pancreatic cancer and adjuvant therapy	
332	present with larger tumors and have a small but significantly higher risk of death than non-diabetic	
333	patients. There seem to be important differences in patients with pancreatic cancer between those	
334	with insulin and non-insulin dependent diabetes mellitus and from previous studies between those	
335	with new onset and established diabetes mellitus. Understanding the biological mechanisms behind	
336	these observations may offer new opportunities for diagnosis and therapy.	
337		
1		

Gelöscht: ¶

Page 12 of 17

	British Journal of Cancer	<u>19 July 2016,</u>	 Gelöscht: 19 July 201618 July 201604 July 2016
339	Figure legends:		 Formatiert: Schriftart: Fett, Nicht unterstrichen
340	•		 Formatiert: Nicht unterstrichen
341	Figure 1: Fitted effect of diabetic status on overall survival in 1105 pancreatic cancer pati	<u>ents</u>	
342	following resection and adjuvant chemotherapy. Yes: diabetic patients; No: non-diabetic	patients	 Formatiert: Nicht unterstrichen
343			
344	Figure 2: Overall survival analysis in diabetic patients stratified according to whether pat	ients were	
345	insulin-dependent (Yes) versus non-insulin-dependent (No), and maximum tumor diamet	<u>er > 30 mm</u>	
346	versus < 30 mm.		 Formatiert: Nicht unterstrichen

19 July 2016

Gelöscht: 19 July 201618 July 201604 July 2016

References

Aggarwal G, Kamada P, Chari ST (2013) Prevalence of diabetes mellitus in pancreatic cancer compared to common cancers. *Pancreas* **42**(2): 198-201

Aggarwal G, Ramachandran V, Javeed N, Arumugam T, Dutta S, Klee GG, Klee EW, Smyrk TC, Bamlet W, Han JJ, Rumie Vittar NB, de Andrade M, Mukhopadhyay D, Petersen GM, Fernandez-Zapico ME, Logsdon CD, Chari ST (2012) Adrenomedullin is up-regulated in patients with pancreatic cancer and causes insulin resistance in beta cells and mice. *Gastroenterology* **143**(6): 1510-1517 e1

Ansary-Moghaddam A, Huxley R, Barzi F, Lawes C, Ohkubo T, Fang X, Jee SH, Woodward M, Asia Pacific Cohort Studies C (2006) The effect of modifiable risk factors on pancreatic cancer mortality in populations of the Asia-Pacific region. *Cancer Epidemiol Biomarkers Prev* **15**(12): 2435-40

Barone BB, Yeh HC, Snyder CF, Peairs KS, Stein KB, Derr RL, Wolff AC, Brancati FL (2008) Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: a systematic review and meta-analysis. *JAMA* **300**(23): 2754-64

Ben Q, Xu M, Ning X, Liu J, Hong S, Huang W, Zhang H, Li Z (2011) Diabetes mellitus and risk of pancreatic cancer: A meta-analysis of cohort studies. *Eur J Cancer* **47**(13): 1928-37

Bosetti C, Lucenteforte E, Silverman DT, Petersen G, Bracci PM, Ji BT, Negri E, Li D, Risch HA, Olson SH, Gallinger S, Miller AB, Bueno-de-Mesquita HB, Talamini R, Polesel J, Ghadirian P, Baghurst PA, Zatonski W, Fontham E, Bamlet WR, Holly EA, Bertuccio P, Gao YT, Hassan M, Yu H, Kurtz RC, Cotterchio M, Su J, Maisonneuve P, Duell EJ, Boffetta P, La Vecchia C (2012) Cigarette smoking and pancreatic cancer: an analysis from the International Pancreatic Cancer Case-Control Consortium (Panc4). *Ann Oncol* **23**(7): 1880-8

Bosetti C, Rosato V, Li D, Silverman D, Petersen GM, Bracci PM, Neale RE, Muscat J, Anderson K, Gallinger S, Olson SH, Miller AB, Bas Bueno-de-Mesquita H, Scelo G, Janout V, Holcatova I, Lagiou P, Serraino D, Lucenteforte E, Fabianova E, Ghadirian P, Baghurst PA, Zatonski W, Foretova L, Fontham E, Bamlet WR, Holly EA, Negri E, Hassan M, Prizment A, Cotterchio M, Cleary S, Kurtz RC, Maisonneuve P, Trichopoulos D, Polesel J, Duell EJ, Boffetta P, La Vecchia C (2014) Diabetes, antidiabetic medications, and pancreatic cancer risk: an analysis from the International Pancreatic Cancer Case-Control Consortium. *Ann Oncol* **25**(10): 2065-72

Calle EE, Murphy TK, Rodriguez C, Thun MJ, Heath CW, Jr. (1998) Diabetes mellitus and pancreatic cancer mortality in a prospective cohort of United States adults. *Cancer Causes Control* **9**(4): 403-10

Chari ST, Leibson CL, Rabe KG, Timmons LJ, Ransom J, de Andrade M, Petersen GM (2008) Pancreatic cancerassociated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. *Gastroenterology* **134**(1): 95-101

Chu CK, Mazo AE, Goodman M, Egnatashvili V, Sarmiento JM, Staley CA, Galloway JR, Adsay NV, Jacobs S, Kooby DA (2010) Preoperative diabetes mellitus and long-term survival after resection of pancreatic adenocarcinoma. *Ann Surg Oncol* **17**(2): 502-13

Page 14 of 17

19 July 2016

Gelöscht: 19 July 201618 July 201604 July 2016

Cox DR (1972) Regression Models and Life-Tables. In *Regression Models and Life-Tables.*, Vol. Series B, pp 187–220. Royal Statistical Society.

Ding XZ, Fehsenfeld DM, Murphy LO, Permert J, Adrian TE (2000) Physiological concentrations of insulin augment pancreatic cancer cell proliferation and glucose utilization by activating MAP kinase, PI3 kinase and enhancing GLUT-1 expression. *Pancreas* **21**(3): 310-20

Everhart J, Wright D (1995) Diabetes mellitus as a risk factor for pancreatic cancer. A meta-analysis. JAMA **273**(20): 1605-9

Fisher WE, Boros LG, Schirmer WJ (1996) Insulin promotes pancreatic cancer: evidence for endocrine influence on exocrine pancreatic tumors. *J Surg Res* **63**(1): 310-3

Gong J, Robbins LA, Lugea A, Waldron RT, Jeon CY, Pandol SJ (2014) Diabetes, pancreatic cancer, and metformin therapy. *Front Physiol* **5**: 426

Gullo L, Pezzilli R, Morselli-Labate AM, Italian Pancreatic Cancer Study G (1994) Diabetes and the risk of pancreatic cancer. *N Engl J Med* **331**(2): 81-4

Hart PA, Law RJ, Frank RD, Bamlet WR, Burch PA, Petersen GM, Rabe KG, Chari ST (2014) Impact of diabetes mellitus on clinical outcomes in patients undergoing surgical resection for pancreatic cancer: a retrospective, cohort study. *Am J Gastroenterol* **109**(9): 1484-92

Hidalgo M, Cascinu S, Kleeff J, Labianca R, Lohr JM, Neoptolemos J, Real FX, Van Laethem JL, Heinemann V (2015) Addressing the challenges of pancreatic cancer: future directions for improving outcomes. *Pancreatology* **15**(1): 8-18

Huxley R, Ansary-Moghaddam A, Berrington de Gonzalez A, Barzi F, Woodward M (2005) Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. *Br J Cancer* **92**(11): 2076-83

Jenkinson C, Elliott V, Evans A, Oldfield L, Jenkins RE, O'Brien DP, Apostolidou S, Gentry-Maharaj A, Fourkala EO, Jacobs I, Menon U, Cox TF, Campbell F, Pereira SP, Tuveson DA, Park PK, Greenhalf W, Sutton RP, Timms JF, Neoptolemos J, Costello E (2015) Decreased serum thrombospondin-1 levels in pancreatic cancer patients up to 24 months prior to clinical diagnosis: association with diabetes mellitus. *Clin Cancer Res*

Kaplan EL, Meier P (1958) Nonparametric Estimation from Incomplete Observations. *Journal of the American Statistical Association* **53**(282): 457-481

Kikuta K, Masamune A, Hamada S, Takikawa T, Nakano E, Shimosegawa T (2013) Pancreatic stellate cells reduce insulin expression and induce apoptosis in pancreatic beta-cells. *Biochem Biophys Res Commun* **433**(3): 292-7

Page 15 of 17

19 July 2016

Gelöscht: 19 July 201618 July 201604 July 2016

Kleeff J, Korc M, Apte M, La Vecchia C, Johnson CD, Biankin AV, Neale RE, Tempero M, Tuveson DA, Hruban RH, Neoptolemos JP (2016) Pancreatic cancer. *Nature Reviews Disease Primers* **2:** 16022

Li D (2012) Diabetes and pancreatic cancer. Mol Carcinog 51(1): 64-74

Li D, Tang H, Hassan MM, Holly EA, Bracci PM, Silverman DT (2011) Diabetes and risk of pancreatic cancer: a pooled analysis of three large case-control studies. *Cancer Causes Control* **22**(2): 189-97

Li D, Yeung SC, Hassan MM, Konopleva M, Abbruzzese JL (2009) Antidiabetic therapies affect risk of pancreatic cancer. *Gastroenterology* **137**(2): 482-8

Litwin J, Dobrowolski S, Orlowska-Kunikowska E, Sledzinski Z (2008) Changes in glucose metabolism after Kausch-Whipple pancreatectomy in pancreatic cancer and chronic pancreatitis patients. *Pancreas* **36**(1): 26-30

Neoptolemos JP, Dunn JA, Stocken DD, Almond J, Link K, Beger H, Bassi C, Falconi M, Pederzoli P, Dervenis C, Fernandez-Cruz L, Lacaine F, Pap A, Spooner D, Kerr DJ, Friess H, Buchler MW (2001) Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial. *Lancet* **358**(9293): 1576-85

Neoptolemos JP, Stocken DD, Bassi C, Ghaneh P, Cunningham D, Goldstein D, Padbury R, Moore MJ, Gallinger S, Mariette C, Wente MN, Izbicki JR, Friess H, Lerch MM, Dervenis C, Olah A, Butturini G, Doi R, Lind PA, Smith D, Valle JW, Palmer DH, Buckels JA, Thompson J, McKay CJ, Rawcliffe CL, Buchler MW, European Study Group for Pancreatic C (2010) Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: a randomized controlled trial. *JAMA* **304**(10): 1073-81

Neoptolemos JP, Stocken DD, Friess H, Bassi C, Dunn JA, Hickey H, Beger H, Fernandez-Cruz L, Dervenis C, Lacaine F, Falconi M, Pederzoli P, Pap A, Spooner D, Kerr DJ, Buchler MW, European Study Group for Pancreatic C (2004) A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. *N Engl J Med* **350**(12): 1200-10

Neoptolemos JP, Stocken DD, Tudur Smith C, Bassi C, Ghaneh P, Owen E, Moore M, Padbury R, Doi R, Smith D, Buchler MW (2009) Adjuvant 5-fluorouracil and folinic acid vs observation for pancreatic cancer: composite data from the ESPAC-1 and -3(v1) trials. *Br J Cancer* **100**(2): 246-50

Pannala R, Leirness JB, Bamlet WR, Basu A, Petersen GM, Chari ST (2008) Prevalence and clinical profile of pancreatic cancer-associated diabetes mellitus. *Gastroenterology* **134**(4): 981-7

Park SM, Lim MK, Shin SA, Yun YH (2006) Impact of prediagnosis smoking, alcohol, obesity, and insulin resistance on survival in male cancer patients: National Health Insurance Corporation Study. *J Clin Oncol* **24**(31): 5017-24

Permert J, Ihse I, Jorfeldt L, von Schenck H, Arnquist HJ, Larsson J (1993) Improved glucose metabolism after subtotal pancreatectomy for pancreatic cancer. Br J Surg 80(8): 1047-50

Page 16 of 17

19 July 2016

Gelöscht: 19 July 201618 July 201604 July 2016

Peto R, Peto J (1972) Asymptotically Efficient Rank Invariant Test Procedures. *Journal of the Royal Statistical Society Series A (General)* **135**(2): 185-207

R-Development-Core-Team (2011) *R: A Language and Environment for Statistical Computing*. Vol. 1(2.11.1). Vienna, Austria: <u>http://www.R-project.org/</u>

Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. *Cancer Res* **74**(11): 2913-21

Schemper M, Smith TL (1996) A note on quantifying follow-up in studies of failure time. *Control Clin Trials* **17**(4): 343-6

Schoenfeld D (1982) Partial Residuals for The Proportional Hazards Regression Model. *Biometrika* **69**(1): 239-241

Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65(1): 5-29

Singh S, Singh PP, Singh AG, Murad MH, McWilliams RR, Chari ST (2013) Anti-diabetic medications and risk of pancreatic cancer in patients with diabetes mellitus: a systematic review and meta-analysis. *Am J Gastroenterol* **108**(4): 510-9; quiz 520

Soranna D, Scotti L, Zambon A, Bosetti C, Grassi G, Catapano A, La Vecchia C, Mancia G, Corrao G (2012) Cancer risk associated with use of metformin and sulfonylurea in type 2 diabetes: a meta-analysis. *Oncologist* **17**(6): 813-22

Stevens RJ, Roddam AW, Beral V (2007) Pancreatic cancer in type 1 and young-onset diabetes: systematic review and meta-analysis. *Br J Cancer* **96**(3): 507-9

van de Poll-Franse LV, Houterman S, Janssen-Heijnen ML, Dercksen MW, Coebergh JW, Haak HR (2007) Less aggressive treatment and worse overall survival in cancer patients with diabetes: a large population based analysis. *Int J Cancer* **120**(9): 1986-92

Walter U, Kohlert T, Rahbari NN, Weitz J, Welsch T (2014) Impact of preoperative diabetes on long-term survival after curative resection of pancreatic adenocarcinoma: a systematic review and meta-analysis. *Ann Surg Oncol* **21**(4): 1082-9

Page 17 of 17