803 research outputs found

    Development of Local Hay Association

    Get PDF
    The need for a Hay marketing system had been obvious to hay sellers and agricultural leaders in Larue County for some time. Five or six hay producers had been selling mainly alfalfa hay to truckers, who would transport the hay to a buyer and reap the profit. Hay was mostly sold by the bale and at a low price. Because of the land and soil type, Larue County had a good potential to produce alfalfa as a cash crop. The development of this potential was being limited by an unreliable and unprofitable market. Given these conditions, the development of a local Hay Marketing Association was a good alternative which we pursued

    Regional differences in the coupling between resting cerebral blood flow and metabolism may indicate action preparedness as a default state.

    Get PDF
    Although most functional neuroimaging studies examine task effects, interest intensifies in the "default" resting brain. Resting conditions show consistent regional activity, yet oxygen extraction fraction constancy across regions. We compared resting cerebral metabolic rates of glucose (CMRgl) measured with 18F-labeled 2-fluoro-2-deoxy-D-glucose to cerebral blood flow (CBF) 15O-H2O measures, using the same positron emission tomography scanner in 2 samples (n = 60 and 30) of healthy right-handed adults. Region to whole-brain ratios were calculated for 35 standard regions of interest, and compared between CBF and CMRgl to determine perfusion relative to metabolism. Primary visual and auditory areas showed coupling between CBF and CMRgl, limbic and subcortical regions--basal ganglia, thalamus and posterior fossa structures--were hyperperfused, whereas association cortices were hypoperfused. Hyperperfusion was higher in left than right hemisphere for most cortical and subcallosal limbic regions, but symmetric in cingulate, basal ganglia and somatomotor regions. Hyperperfused regions are perhaps those where activation is anticipated at short notice, whereas downstream cortical modulatory regions have longer "lead times" for deployment. The novel observation of systematic uncoupling of CBF and CMRgl may help elucidate the potential biological significance of the "default" resting state. Whether greater left hemispheric hyperperfusion reflects lateral dominance needs further examination

    Proactive and reactive cognitive control and dorsolateral prefrontal cortex dysfunction in first episode schizophrenia.

    Get PDF
    Cognitive control deficits have been consistently documented in patients with schizophrenia. Recent work in cognitive neuroscience has hypothesized a distinction between two theoretically separable modes of cognitive control-reactive and proactive. However, it remains unclear the extent to which these processes are uniquely associated with dysfunctional neural recruitment in individuals with schizophrenia. This functional magnetic resonance imaging (fMRI) study utilized the color word Stroop task and AX Continuous Performance Task (AX-CPT) to tap reactive and proactive control processes, respectively, in a sample of 54 healthy controls and 43 patients with first episode schizophrenia. Healthy controls demonstrated robust dorsolateral prefrontal, anterior cingulate, and parietal cortex activity on both tasks. In contrast, patients with schizophrenia did not show any significant activation during proactive control, while showing activation similar to control subjects during reactive control. Critically, an interaction analysis showed that the degree to which prefrontal activity was reduced in patients versus controls depended on the type of control process engaged. Controls showed increased dorsolateral prefrontal cortex (DLPFC) and parietal activity in the proactive compared to the reactive control task, whereas patients with schizophrenia did not demonstrate this increase. Additionally, patients' DLPFC activity and performance during proactive control was associated with disorganization symptoms, while no reactive control measures showed this association. Proactive control processes and concomitant dysfunctional recruitment of DLPFC represent robust features of schizophrenia that are also directly associated with symptoms of disorganization

    Divergence of the diapause transcriptome in apple maggot flies: winter regulation and post-winter transcriptional repression

    Get PDF
    Citation: Meyers, P. J., Powell, T. H. Q., Walden, K. K. O., Schieferecke, A. J., Feder, J. L., Hahn, D. A., . . . Ragland, G. J. (2016). Divergence of the diapause transcriptome in apple maggot flies: winter regulation and post-winter transcriptional repression. Journal of Experimental Biology, 219(17), 2613-2622. doi:10.1242/jeb.140566The duration of dormancy regulates seasonal timing in many organisms and may be modulated by day length and temperature. Though photoperiodic modulation has been well studied, temperature modulation of dormancy has received less attention. Here, we leverage genetic variation in diapause in the apple maggot fly, Rhagoletis pomonella, to test whether gene expression during winter or following spring warming regulates diapause duration. We used RNAseq to compare transcript abundance during and after simulated winter between an apple-infesting population and a hawthorn-infesting population where the apple population ends pupal diapause earlier than the hawthorn-infesting population. Marked differences in transcription between the two populations during winter suggests that the 'early' apple population is developmentally advanced compared with the 'late' hawthorn population prior to spring warming, with transcripts participating in growth and developmental processes relatively up-regulated in apple pupae during the winter cold period. Thus, regulatory differences during winter ultimately drive phenological differences that manifest themselves in the following summer. Expression and polymorphism analysis identify candidate genes in the Wnt and insulin signaling pathways that contribute to population differences in seasonality. Both populations remained in diapause and displayed a pattern of up-and then down-regulation (or vice versa) of growth-related transcripts following warming, consistent with transcriptional repression. The ability to repress growth stimulated by permissive temperatures is likely critical to avoid mismatched phenology and excessive metabolic demand. Compared with diapause studies in other insects, our results suggest some overlap in candidate genes/pathways, though the timing and direction of changes in transcription are likely species specific

    Sympatric ecological speciation meets pyrosequencing: sampling the transcriptome of the apple maggot Rhagoletis pomonella

    Get PDF
    Background The full power of modern genetics has been applied to the study of speciation in only a small handful of genetic model species - all of which speciated allopatrically. Here we report the first large expressed sequence tag (EST) study of a candidate for ecological sympatric speciation, the apple maggot Rhagoletis pomonella, using massively parallel pyrosequencing on the Roche 454-FLX platform. To maximize transcript diversity we created and sequenced separate libraries from larvae, pupae, adult heads, and headless adult bodies. Results We obtained 239,531 sequences which assembled into 24,373 contigs. A total of 6810 unique protein coding genes were identified among the contigs and long singletons, corresponding to 48% of all known Drosophila melanogaster protein-coding genes. Their distribution across GO classes suggests that we have obtained a representative sample of the transcriptome. Among these sequences are many candidates for potential R. pomonella speciation genes (or barrier genes ) such as those controlling chemosensory and life-history timing processes. Furthermore, we identified important marker loci including more than 40,000 single nucleotide polymorphisms (SNPs) and over 100 microsatellites. An initial search for SNPs at which the apple and hawthorn host races differ suggested at least 75 loci warranting further work. We also determined that developmental expression differences remained even after normalization; transcripts expected to show different expression levels between larvae and pupae in D. melanogaster also did so in R. pomonella. Preliminary comparative analysis of transcript presences and absences revealed evidence of gene loss in Drosophila and gain in the higher dipteran clade Schizophora. Conclusions These data provide a much needed resource for exploring mechanisms of divergence in this important model for sympatric ecological speciation. Our description of ESTs from a substantial portion of the R. pomonella transcriptome will facilitate future functional studies of candidate genes for olfaction and diapause-related life history timing, and will enable large scale expression studies. Similarly, the identification of new SNP and microsatellite markers will facilitate future population and quantitative genetic studies of divergence between the apple and hawthorn-infesting host races

    Experimental evidence of genome-wide impact of ecological selection during early stages of speciation-with-gene-flow

    Get PDF
    Theory predicts that speciation-with-gene-flow is more likely when the consequences of selection for population divergence transitions from mainly direct effects of selection acting on individual genes to a collective property of all selected genes in the genome. Thus, understanding the direct impacts of ecologically based selection, as well as the indirect effects due to correlations among loci, is critical to understanding speciation. Here, we measure the genome-wide impacts of host-associated selection between hawthorn and apple host races of Rhagoletis pomonella (Diptera: Tephritidae), a model for contemporary speciation-with-gene-flow. Allele frequency shifts of 32 455 SNPs induced in a selection experiment based on host phenology were genome wide and highly concordant with genetic divergence between co-occurring apple and hawthorn flies in nature. This striking genome-wide similarity between experimental and natural populations of R. pomonella underscores the importance of ecological selection at early stages of divergence and calls for further integration of studies of eco-evolutionary dynamics and genome divergence

    Milliarcsecond N-Band Observations of the Nova RS Ophiuchi: First Science with the Keck Interferometer Nuller

    Get PDF
    We report observations of the nova RS Ophiuchi (RS Oph) using the Keck Interferometer Nuller (KIN), approximately 3.8 days following the most recent outburst that occurred on 2006 February 12. These observations represent the first scientific results from the KIN, which operates in N-band from 8 to 12.5 microns in a nulling mode. By fitting the unique KIN data, we have obtained an angular size of the mid-infrared continuum of 6.2, 4.0, or 5.4 mas for a disk profile, gaussian profile (FWHM), and shell profile respectively. The data show evidence of enhanced neutral atomic hydrogen emission and atomic metals including silicon located in the inner spatial regime near the white dwarf (WD) relative to the outer regime. There are also nebular emission lines and evidence of hot silicate dust in the outer spatial region, centered at ! 17 AU from the WD, that are not found in the inner regime. Our evidence suggests that these features have been excited by the nova flash in the outer spatial regime before the blast wave reached these regions. These identifications support a model in which the dust appears to be present between outbursts and is not created during the outburst event. We further discuss the present results in terms of a unifying model of the system that includes an increase in density in the plane of the orbit of the two stars created by a spiral shock wave caused by the motion of the stars through the cool wind of the red giant star. These data show the power and potential of the nulling technique which has been developed for the detection of Earth-like planets around nearby stars for the Terrestrial Planet Finder Mission and Darwin missions.Comment: 41 pages, 10 figure

    “It's Not What You Say, But How You Say it”: A Reciprocal Temporo-frontal Network for Affective Prosody

    Get PDF
    Humans communicate emotion vocally by modulating acoustic cues such as pitch, intensity and voice quality. Research has documented how the relative presence or absence of such cues alters the likelihood of perceiving an emotion, but the neural underpinnings of acoustic cue-dependent emotion perception remain obscure. Using functional magnetic resonance imaging in 20 subjects we examined a reciprocal circuit consisting of superior temporal cortex, amygdala and inferior frontal gyrus that may underlie affective prosodic comprehension. Results showed that increased saliency of emotion-specific acoustic cues was associated with increased activation in superior temporal cortex [planum temporale (PT), posterior superior temporal gyrus (pSTG), and posterior superior middle gyrus (pMTG)] and amygdala, whereas decreased saliency of acoustic cues was associated with increased inferior frontal activity and temporo-frontal connectivity. These results suggest that sensory-integrative processing is facilitated when the acoustic signal is rich in affective information, yielding increased activation in temporal cortex and amygdala. Conversely, when the acoustic signal is ambiguous, greater evaluative processes are recruited, increasing activation in inferior frontal gyrus (IFG) and IFG STG connectivity. Auditory regions may thus integrate acoustic information with amygdala input to form emotion-specific representations, which are evaluated within inferior frontal regions

    Induction of \u3cem\u3eIL19\u3c/em\u3e Expression through JNK and cGAS-STING Modulates DNA Damage–Induced Cytokine Production

    Get PDF
    Cytokine production is a critical component of cell-extrinsic responses to DNA damage and cellular senescence. Here, we demonstrated that expression of the gene encoding interleukin-19 (IL-19) was enhanced by DNA damage through pathways mediated by c-Jun amino-terminal kinase (JNK) and cGAS-STING and that IL19 expression was required for the subsequent production of the cytokines IL-1, IL-6, and IL-8. IL19 expression was stimulated by diverse cellular stresses, including inhibition of the DNA replication checkpoint kinase ATR (ataxia telangiectasia and Rad3-related protein), oncogene expression, replicative exhaustion, oxidative stress, and DNA double-strand breaks. Unlike the production of IL-6 and IL-8, IL19 expression was not affected by abrogation of signaling by the IL-1 receptor (IL-1R) or the mitogen-activated protein kinase p38. Instead, the DNA damage–induced production of IL-1, IL-6, and IL-8 was substantially reduced by suppression of IL19 expression. The signaling pathways required to stimulate IL19 expression selectively depended on the type of DNA-damaging agent. Reactive oxygen species and the ASK1-JNK pathway were critical for responses to ionizing radiation (IR), whereas the cGAS-STING pathway stimulated IL19 expression in response to either IR or ATR inhibition. Whereas induction of IL1, IL6, and IL8 by IR depended on IL19 expression, the cGAS-STING–dependent induction of the immune checkpoint gene PDL1 after IR and ATR inhibition was independent of IL19. Together, these results suggest that IL-19 production by diverse pathways forms a distinct cytokine regulatory arm of the response to DNA damage
    corecore