140 research outputs found

    Variations of biofouling communities in an off-shore fish cage farm from North-Western Sardinia = Variazioni del biofouling in un allevamento ittico in gabbie off-shore della Sardegna nord-occidentale

    Get PDF
    Biofouling variations were studied in a fish farming facility near Alghero (Italy) between November 2007 and November 2008. Net panels suitable for the settlement of encrusting organisms were immersed in cages in which large and small gilthead seabream specimens were reared. Significant differences in biofouling biomass and coverage were observed between cages containing fish and controls. The results obtained revealed that gilthead seabream can exert a crucial role in controlling biofouling growth, independently from its size

    High CO2 decreases the long-term resilience of the free-living coralline algae Phymatolithon lusitanicum

    Get PDF
    Maerl/rhodolith beds are protected habitats that may be affected by ocean acidification (OA), but it is still unclear how the availability of CO2 will affect the metabolism of these organisms. Some of the inconsistencies found among OA experimental studies may be related to experimental exposure time and synergetic effects with other stressors. Here, we investigated the long-term (up to 20months) effects of OA on the production and calcification of the most common maerl species of southern Portugal, Phymatolithon lusitanicum. Both the photosynthetic and calcification rates increased with CO2 after the first 11months of the experiment, whereas respiration slightly decreased with CO2. After 20months, the pattern was reversed. Acidified algae showed lower photosynthetic and calcification rates, as well as lower accumulated growth than control algae, suggesting that a metabolic threshold was exceeded. Our results indicate that long-term exposure to high CO2 will decrease the resilience of Phymatolithon lusitanicum. Our results also show that shallow communities of these rhodoliths may be particularly at risk, while deeper rhodolith beds may become ocean acidification refuges for this biological community.Fundacao para a Ciencia e a Tecnologia [PTDC/MAR/115789/2009, SFRH/BD/76762/2011

    Century-scale trends and seasonality in pH and temperature for shallow zones of the Bering Sea

    Get PDF
    No records exist to evaluate long-term pH dynamics in high-latitude oceans, which have the greatest probability of rapid acidification from anthropogenic CO2 emissions. We reconstructed both seasonal variability and anthropogenic change in seawater pH and temperature by using laser ablation high-resolution 2D images of stable boron isotopes (δ11B) on a long-lived coralline alga that grew continuously through the 20th century. Analyses focused on four multiannual growth segments. We show a long-term decline of 0.08 ± 0.01 pH units between the end of the 19th and 20th century, which is consistent with atmospheric CO2 records. Additionally, a strong seasonal cycle (∼0.22 pH units) is observed and interpreted as episodic annual pH increases caused by the consumption of CO2 during strong algal (kelp) growth in spring and summer. The rate of acidification intensifies from –0.006 ± 0.007 pH units per decade (between 1920s and 1960s) to –0.019 ± 0.009 pH units per decade (between 1960s and 1990s), and the episodic pH increases show a continuous shift to earlier times of the year throughout the centennial record. This is indicative of ecosystem shifts in shallow water algal productivity in this high-latitude habitat resulting from warming and acidification

    A new species of the cheilostome bryozoan Chiastosella in the Southern Ocean, past and present

    Get PDF
    0000-0001-7279-715XThe attached document is the author('s) final accepted version of the journal article. You are advised to consult the publisher's version if you wish to cite from it

    On the circalittoral benthic communities in the Asinara Marine Park = Sui popolamenti circalitorali dell'Isola dell'Asinara

    Get PDF
    This work reports the results of various surveys made in the North Weslern part of Asinara National Park. It was oriented to the description of deep benthic communities. A conspicuous number of rare species and biogeographically interesting populations for the Mediterranean Sea are present in this area, in particular coralligenous formation are present in typical form as well as in enclave and platlorms

    Influences of salinity on the physiology and distribution of the Arctic coralline algae, Lithothamnion glaciale (Corallinales, Rhodophyta)

    Get PDF
    In Greenland, free-living red coralline algae contribute to and dominate marine habitats along the coastline. Lithothamnion glaciale dominates coralline algae beds in many regions of the Arctic, but never in Godthåbsfjord, Greenland, where Clathromorphum sp. is dominant. To investigate environmental impacts on coralline algae distribution, calcification and primary productivity were measured in situ during summers of 2015 and 2016, and annual patterns of productivity in L. glaciale were monitored in laboratory-based mesocosm experiments where temperature and salinity were manipulated to mimic high glacial melt. The results of field and cold-room measurements indicate that both L. glaciale and Clathromorphum sp. had low calcification and photosynthetic rates during the Greenland summer (2015 and 2016), with maximum of 1.225 ± 0.17 or 0.002 ± 0.023 μmol CaCO3 · g-1 · h-1 and -0.007 ±0.003 or -0.004 ± 0.001 mg O2 · L-1 · h-1 in each species respectively. Mesocosm experiments indicate L. glaciale is a seasonal responder; photosynthetic and calcification rates increase with annual light cycles. Furthermore, metabolic processes in L. glaciale were negatively influenced by low salinity; positive growth rates only occurred in marine treatments where individuals accumulated an average of 1.85 ± 1.73 mg · d-1 of biomass through summer. These results indicate high freshwater input to the Godthåbsfjord region may drive the low abundance of L. glaciale, and could decrease species distribution as climate change increases freshwater input to the Arctic marine system via enhanced ice sheet runoff and glacier calving.Peer reviewedFinal Accepted Versio

    Skeletal trade-offs in coralline algae in response to ocean acidification

    Get PDF
    Ocean acidification is changing the marine environment, with potentially serious consequences for many organisms. Much of our understanding of ocean acidification effects comes from laboratory experiments, which demonstrate physiological responses over relatively short timescales. Observational studies and, more recently, experimental studies in natural systems suggest that ocean acidification will alter the structure of seaweed communities. Here, we provide a mechanistic understanding of altered competitive dynamics among a group of seaweeds, the crustose coralline algae (CCA). We compare CCA from historical experiments (1981-1997) with specimens from recent, identical experiments (2012) to describe morphological changes over this time period, which coincides with acidification of seawater in the Northeastern Pacific. Traditionally thick species decreased in thickness by a factor of 2.0-2.3, but did not experience a change in internal skeletal metrics. In contrast, traditionally thin species remained approximately the same thickness but reduced their total carbonate tissue by making thinner inter-filament cell walls. These changes represent alternative mechanisms for the reduction of calcium carbonate production in CCA and suggest energetic trade-offs related to the cost of building and maintaining a calcium carbonate skeleton as pH declines. Our classification of stress response by morphological type may be generalizable to CCA at other sites, as well as to other calcifying organisms with species-specific differences in morphological types

    Prime considerazioni sui S.I.C. marini della Sardegna

    Get PDF
    Today there are in Sardinia 114 Natura 2000 sites: 59 include marine and coastal zones with 41% of the entire Island perimeter. These sites include the most important biocenosys and geomorphology structures of the mediolittoral and infralittoral zones. This work provides a critical revision of the single marine habitats included in Natura 2000 network with some consideration of the present state and some suggestion for possible integrations

    Monitoraggio della vegetazione sommersa nella Secca di Spargiotto (Arcipelago di La Maddalena) = Study of the marine benthic vegetation the Secca di Spargiotto (La Maddalena Archipelago)

    Get PDF
    The infralittoral marine benthic vegetation in the Secca di Spargiotto was investigated in order to find a suitable site for the restocking of Palinurus elephas. The benthic community appear to be well structured and in particular the North part of the Secca di Spargiotto is the more suitable for the reintroduction of Palinurus elephas
    corecore