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No records exist to evaluate long-term pH dynamics in high-
latitude oceans, which have the greatest probability of rapid
acidification from anthropogenic CO2 emissions. We reconstructed
both seasonal variability and anthropogenic change in seawater
pH and temperature by using laser ablation high-resolution 2D
images of stable boron isotopes (δ11B) on a long-lived coralline
alga that grew continuously through the 20th century. Analyses
focused on four multi-annual growth segments. We show a long-
term decline of 0.08±0.01 pH units between the end of the 19th and
20th century which is consistent with atmospheric CO2 records.
Additionally, a strong seasonal cycle (∼0.22 pH units) is observed
and interpreted as episodic annual pH increases caused by the con-
sumption of CO2 during strong algal (kelp) growth in spring and
summer. The rate of acidification intensifies from -0.006±0.007 pH
units per decade (between 1920's and 1960's) to -0.019±0.009 pH
units per decade (between 1960's and 1990's) while the episodic
pH increases show a continuous shift to earlier times of the year
throughout the centennial record. This is indicative of ecosystem
shifts in shallow water algal productivity in this high-latitude
habitat resulting from warming and acidification.

ocean acidification | boron isotopes | isotope imaging | laser ablation
ICP-MS | crustose algae

So far about 30 % of the anthropogenic carbon dioxide
emissions have been taken up by the oceans (1, 2) which are one
of the major reservoirs of the global carbon cycle. Since the mid-
19th century the carbon dioxide concentration in the atmosphere
has increased to more than 390 µatm (3), well above the typical
range reconstructed for the glacial/interglacial cycles (190-280
µatm) over the last 500,000 yrs. This increase in atmospheric CO2
has shifted the carbonic acid equilibrium in seawater, resulting
in a pH decrease (ocean acidification) lowering the carbonate
ion concentration. Over the last ∼150 years the global average
surface water pH has declined by about 0.15 pH units (2) and is
expected to have further decreased by 0.3-0.4 pH units by the year
2100 (4). This is expected to trigger major shifts in marine ecosys-
tems, challenging marine calcifiers’ ability to form carbonate
hard substrate as a consequence of a lowered calcium carbonate
saturation state (4-6). This reduction of saturation (i.e. increase
in solubility) is a direct consequence of the lowered carbonate ion
concentration. Compared to this the weak increase in saturation
from rising temperatures (ocean warming) is almost negligible
(7). Recent research on future changes of marine ecosystems has
largely focused on laboratory-based culturing studies and meso-
cosm experiments (6, 8, 9). However, tomake realistic predictions
additional information about past natural variability also needs to
be obtained directly from long-lived calcifiers, which experienced
a whole complexity of challenges within their natural habitats
including pH variability (10).

Proxy-based reconstructions of ocean pH are commonly
made by mass spectrometric determination (TIMS, SIMS and
MC-ICP-MS) of δ11B on discrete carbonate samples (11-14). Us-

ing these methods long-term records of ocean pH variability have
been established (15-17). However, these time-series suffer from
poor temporal resolution and do not resolve small-scale spatial
heterogeneities of natural samples. High-resolution records are
desired since they allow for investigation of both, short-term
variability and long-term trends in pH. Furthermore, available pH
proxy-records focus on the tropics. At high latitudes no such data
are available, despite the fact that these regions naturally show
low carbonate saturation state and the highest CO2 uptake due
to the cold surface water temperature.

For the first time we apply the recently developed Laser-
Ablation-Multi-Collector-ICP-MS (LA-MC-ICP-MS) in-situ
method (18) as a microchemical imaging technique to provide
a spatially and temporally highly resolved δ11B record from a
long-lived subarctic coralline alga. Crustose coralline red algae
are long-lived marine organisms that form annually laminated
high-Mg-calcite structures (19). They are among the major
calcifiers in shallow-water benthic communities from the tropics
to polar regions (20, 21). The chemical composition of their
skeleton is controlled by algal physiology responding to the
environmental parameters (e.g. light, nutrients, temperature,
pH) (22, 23). Coralline algae have received widespread attention
as temperature proxy archives on weekly to multi-centennial
timescales (19, 24, 25).

For this study we used a sample (Figure 1) of the alga
Clathromorphum nereostratum Lebednik, collected alive at 10

Significance

Increasing atmospheric CO2 concentrations are potentially af-
fecting marine ecosystems twofold, by warming and acidi-
fication. The rising amount of CO2 taken up by the ocean
lowers the saturation state of calcium carbonate complicating
the formation of this key biomineral utilized by many marine
organisms to build hard parts like skeletons or shells. Reliable
time-series data of seawater pH are needed to evaluate the
ongoing change and compare long-term trends and natural
variability. For the high-latitude ocean, the region facing the
strongest CO2 uptake, such time-series data are so far entirely
lacking. Our study provides the first reconstruction of seasonal
cycle and long-term trend in pH for a high-latitude ocean
obtained from 2D images of stable boron isotopes from a
coralline alga.
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Submission PDFFig. 1. Clathromorphum nereostratum sample from Attu Island, Alaska.
A) Overview image of the sample including reference dates (29), lines of
dark spots are conceptacle cavities. B) Secondary Electron (SE) image of
reproductive structures (conceptacles).

m water depth off the eastern coast of Attu Island (Massacre
Bay at Murder Point, Attu, Aleutian Islands – N 52° 47.787, E
173° 10.796) in August 2004. The local habitat is ecologically
dominated by an annually growing kelp species (Dragon kelp,
Eualaria fistulosa) being the main primary producer. The coastal
waters of Attu Island are free of ice the whole year round (annual
SST range: 2.2 - 10.5 °C, based on ERSST v2 (26)). The steep
slopes of the Aleutian Island chain create a dynamic oceano-
graphic environment (including upwelling) featuring the Alaskan
Stream as the main current system south of the islands. This
strong, westward boundary current transports relatively warm
nutrient-rich low salinity (∼32 psu) water passing through the
gaps between the Aleutian Islands. It forms the Aleutian North
Slope Current (ANSC), an eastward current north of the island
chain. One of the main inflows of the Alaskan Stream into the
Bering Sea is Near Strait, located west of Attu Island (27, 28). The
influence of the Pacific Decadal Oscillation (PDO) on the multi-
decadal climate variability at the collection site has been reported
in a previous publication (29).

The collected C. nereostratum specimen revealed a continu-
ous growth record spanning from 1887 to 2004 (Figure 1A) with
growth rate averaging 370 µm/y (29). The age model has pre-
viously been established by counting annual growth increments
and validated by U/Th dates (29). The visual identification of
annual growth increments is additionally aided by the annual
formation of conceptacle cavities (reproductive structures; Figure
1B). Starting in late summer conceptacles develop in cavities
partially formed by dissolution of the formerly precipitated calcite
skeleton (30). The newly formed calcite structures within and sur-
rounding the conceptacles may contain re-precipitated material
and are morphologically and chemically distinct from the primary
calcite. Hence, reliable proxy data can only be obtained from the
primary calcite found in the vegetative thallus.

Mg/Ca ratios in different coralline algal species have previ-
ously been shown to be positively related to ambient seawater
temperatures (24, 25, 31, 32). Mg/Ca based temperature time se-
ries obtained fromMg/Ca electron microprobe (EMP) elemental
mappings display a characteristic pattern related to the seasonal
cycle in ambient water temperature (spatially biased by variable

algal growth rates). Minima of 2-3 °C during winter and maxima
of 10-11 °C mark the annual cycle recorded by the algal skeleton
(Figure 2). Element maps indicate that about 75 % of the annu-
ally precipitated calcite is related to spring and summer growth.
The growth rate declines significantly by the end of summer. A
likely explanation for this growth rate reduction is the beginning
of conceptacle formation by the end of summer, as insolation
declines and algal physiology shifts from growth to reproduction.
It is also apparent from the elemental maps that conceptacle
calcite contains significantly higher amounts of Mg than primary
calcite and therefore must be excluded from the temperature
reconstruction. Mean temperatures derived from Mg/Ca maps
(see Figure 2) of 5.3 °C (M-1887/97; for sample denotation see
methods) and 6.2 °C (M-1987/96) suggest a warming trend over
the 100 year period.

Within the areas used for high resolution EMP analysis we
acquired the first accurate and precise 2D images representing
the variability of stable isotopes of boron (11B/10B) in natural
samples using LA-MC-ICP-MS (18) at a resolution of 100 µm.
This allows for the visualization of the spatial distribution of
isotopic signatures in a complex sample (Figure 3A, see support-
ing information for methods). In addition to cyclic intra-annual
δ11B variability, the distinct composition of conceptacle calcite is
apparent in the δ11B images. This further highlights differences in
the calcification process of both, primary and secondary calcite.

C. nereostratum shows a large degree of variability in δ11B
values ranging from about 21-27. The low values are clearly asso-
ciated with conceptacle areas (Figure 3A). Using only data from
primary calcite (see supporting information) δ11B averages in B-
1888/94 are by about 1 to 1.2 higher than in B-1989/96. The con-
version of δ11B into pH revealed a decline of 0.08±0.01 pH units
between B-1888/94 and B-1989/96, while the absolute boron-
derived pH values are almost 0.7 pH units above the reasonable
ambient seawater pH range in the Bering Sea. A comparable
offset between δ11B-derived and ambient seawater pH has also
been observed in other marine calcifying organisms e.g. corals
(33-36). It is interpreted as the result of the organism’s physio-
logical control on the calcifying fluid composition, up-regulating
the pH relative to ambient seawater to provide more alkaline
conditions to promote calcification (33-36). δ11B is considered
to represent the calcifying fluid pH (pHcf). For corals δ11B-
pH calibration studies revealed the up-regulation being species-
dependent resulting in an approximately half as strong change
in pHcf relative to the external pH change (34). Nevertheless,
different coral species show distinct sensitivities in the response
to acidification and, thus, differ in their δ11B-pH relationship, i.e.
their up-regulation potential (33, 34).

No δ11B-pH calibration studies exist for coralline algae so
far. Future studies will reveal if or to what extend the mentioned
systematic found for corals can be transferred to coralline algae.
A recently published study suggests the impact of seawater chem-
istry on the calcification is more direct for coralline algae than for
corals (37). Consequently, we reconstruct pHcf and its temporal
changes from δ11B in our algal sample. The observed drop of
0.08±0.01 pH units is in good agreement with the expected shift in
sea surface water pH from rising atmospheric pCO2 levels (1900:
∼295 µatm; 1990´s:∼360 µatm). This suggests that boron isotope
data derived from C. nereostratum accurately reflect long-term
changes in sea water pH. It also implies the pHcf in this algal
species follows external pHmore closely than reported for corals.
Despite the long-term pH decline recorded by the coralline alga,
potential negative impacts on annual skeletal growth rates of
Bering Sea C. nereostratum corallines have not yet been observed
(19).

Furthermore, the δ11B images reveal cyclic variations (Figure
3B), pointing to a distinct seasonal cycle of pHcf and consequently
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Fig. 2. Electron microprobe Mg/Ca elemental ra-
tio maps used for temperature reconstruction. A)
Overviewmap of the whole sample (30 µm resolution)
to examine long-term variability in Mg/Ca. B) Sub-
sample maps (5 µm resolution) from early-industrial
(M-1887/97) and recent (M-1988/98) to examine intra-
annual variability in Mg/Ca. “M-years” designates the
respective EMP map and the time interval covered.
C) Temperature reconstructed from Mg/Ca using data
from B). Each data point of the time series represents
average values of about 100 individual Mg/Ca data
points from the original mappings (see supporting
information for data treatment).

Fig. 3. Stable boron isotope ratio (δ11B) images
acquired by LA- MC-ICP-MS used for pH reconstruc-
tion. A) δ11B images (100 µm resolution) displayed
as overlays on secondary electron images from the
electron microprobe measurements (Fig. 2) referred
to as B-1888/1894 and B-1989/96 in the text. B) δ11B
time series showing a long-term decrease equal to
0.08±0.01 pH units between the 1890’s and 1990’s
in good agreement with atmospheric CO2 records
(see text and supplementary material). Additionally,
a seasonal pH cycle of at least 0.1 pH units can be
seen for the years 1994-1996 (yellow) using only data
from the area least influenced by secondary calcite
(see supporting information for data treatment).

seawater pH. When comparing the spatial distribution of both
δ11B and Mg/Ca maps we find the highest boron isotopic values
clearly preceding the annual peak in Mg/Ca. This suggests that
the pH maximum occurs during late spring/early summer growth
intervals (see supporting information S4). This seasonal cycle
in δ11B of up to 5 is observed for all 14 annual growth layers
investigated in TS-1923/27, TS-1961/65 and TS-1989/92 (Figure
4D). Less than 30% of the variability in δ11B results from the
influence of temperature on the boric acid pKB. The remaining
signal trend corresponds to an average intra-annual pHcf variabil-
ity of 0.22±0.03 with the lowest values during winter and early
spring and maxima during late spring and summer.

How does the observed algal annual pH data compare to
what is known for the region? Attu Island is uninhabited and no

time-series pH data have been made available to date. Hence,
we are restricted to gridded climatological data. Using a recently
published global seawater carbonate system dataset (38) we can
estimate an annual pH signal for the open waters around Attu
in the order of about 0.1 pH units (see details in supporting
information S5, Fig. S8), lowest pH calculated for January-March
and highest values for July-October. This signal is less than half
of what we have reconstructed from δ11B in our algal sample.
However, a significantly larger variability in pH is possible for
the local coastal habitat where our C. nereostratum specimen had
grown. As mentioned above the local habitat is dominated by an-
nually growing kelp, being the dominant primary producer. Kelp-
dominated habitats are reported to be among themost productive
ecosystems in the global ocean (39, 40). Starting in spring these
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Fig. 4. Seasonal pH variability. A) EMP Mg/Ca el-
emental maps (10 µm resolution) for the time slices
(TS-1923/27, TS-1961/65, TS-1989/92) selected for not
showing any traces of skeletal destruction from graz-
ing. “TS-years” designates the δ11B time series and the
time interval covered. B) Mg/Ca time series’ obtained
from a) used for temperature calculation. C) δ11B time
series determined via LA-MC-ICP-MS (66µm resolu-
tion). D) internal (calcifying fluid) pH derived from
δ11B time series using Mg/Ca derived temperatures
to correct boric acid pKB (for details see text and
supporting information). Dashed line represents the
mean pH (8.75) of the three time series data.

fast-growing macro algae consume huge amounts of CO2 for
photosynthesis. As a consequence of depletion in dissolved CO2
in the water the carbonic acid equilibrium should shift towards
higher pH values. Indeed, highly dynamic pH conditions have
been reported for kelp-dominated habitats (41). Our observation
of pH maxima occurring in spring/ early summer agrees with the
seasonality of kelp growth in this habitat supporting the proposed
effect.

Further support for the assumed higher pH dynamic linked to
enhanced productivity is provided by the oceanographic environ-
ment, local topography and remote-sensing data. As pointed out
before strong currents (Alaskan Stream in the South andAleutian
North SlopeCurrent in theNorth) including the northward inflow
into the Bering Sea through Near Strait are the prominent hy-
drographic features close to Attu Island. The steep island slopes
foster upwelling of nutrient-rich deeper water masses. A resulting
enhanced productivity in coastal waters (so-called “island mass
effect”) has been reported for comparable environmental settings
(42, 43). Satellite data of Chlorophyll a provide clear evidence
for Attu Island being a productivity hotspot (for details see sup-
porting information S5, Fig. S9). During summer Chlorophyll a
concentrations in coastal waters south-east off Attu Island exceed
2 mg/m3 while in open waters of this region 0.2-0.6 mg/m3 is
measured.

We therefore think a larger annual pH cycle than suggested
by climatological data for open waters can be expected for this
coastal habitat and is recorded by δ11B in the calcite skeleton
of C. nereostratum. Ultimately, δ11B-pH calibration studies are
needed using specimens cultured under controlled conditions or
free-living ones after data logger had been deployed in the natural
habitat. For now winter/early spring growth layers, when ambient
water pCO2 is equilibrated with the atmosphere (equating to
δ11B minima), are considered the most useful to assess the long-
term pH trend. Indeed we find a gradual decline for the aver-
age internal pH minima (TS-1923/27: 8.683±0.021; TS-1961/65:
8.660±0.015; TS-1989/92: 8.608±0.020). This trend agrees well
with the centennial 0.08±0.01 reduction in pH obtained from
B-1888/94 and B-1989/96 (Fig. 4D). Our results indicate an in-
crease in the rate of acidification from -0.006±0.007 pH units
per decade (between 1920’s and 1960’s) to -0.019±0.009 pH units
per decade (between 1960’s and 1990’s) closely following the

trend in atmospheric CO2 concentration. With respect to relative
pH change our findings agree with the estimated global average
surface water pH decline of 0.15 pH units over the last ∼150
years (2). Nevertheless, due to the low water temperatures in
this high latitude ocean habitat calcium carbonate saturation is
significantly lower than in the tropical or temperate regions of the
global oceans. Thus, any further saturation state reduction from
lowered pHwill potentially affect calcifying organisms stronger in
the habitat investigated. Our results, however, are based on the
four growth segments analyzed. Therefore, we cannot rule out
inter-annual or inter-decadal pH variability which future studies
should focus on.

The comparison of annual Mg/Ca and δ11B peak positions
in the time series data provides a first indication of long-term
temporal shifts of algal (kelp) growth season (see supporting
information S6).Mg/Ca peaks, indicating the annual temperature
maxima, show a weak temporal trend towards higher relative
positions within the annual growth band, possibly due to an
increase in spring/summer growth. An opposite trend towards
lower relative positions is observed for δ11B peaks representing
pH which always precede their corresponding Mg/Ca peak. The
offset between δ11B and Mg/Ca peaks (expressed as % of annual
growth) changed from 10±9 % (TS-1923/27) to 20±11 % (TS-
1961/65) and 39±10 % (TS-1989/92). This is interpreted as a
long-term shift of algal (kelp) growth towards earlier times of
the season in the study area. Together with the above mentioned
warming trend our results indicate an ongoing ecosystem shift in
this high-latitude ocean coastal habitat.

The detection of intra-annual variability in pH caused by
the seasonal uptake of CO2 by algae (kelp) for photosynthesis
applying the presented methodology enables us to reconstruct
intensities and timing of the growth season influenced by param-
eters like light, temperature, nutrient supply (e.g. from upwelling
or volcanic ash supply) over wide temporal and spatial scales.
Particularly, through the use of long-lived crustose coralline algae
natural pH variability and long-term trends can be investigated in
the higher latitudes, the part of the oceans showing the strongest
CO2 uptake. In combination with similar records from lower
latitudes e.g. using corals or coralline algae this will help to
increase our understanding of the complex responses of marine
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ecosystems with respect to pH in a world of further increasing
atmospheric CO2.

Methods
Stable boron isotope analysis via LA-MC-ICP-MS was performed using two
different approaches (for full technical details see supporting information
S3):

1) 2D images (3x3 mm², 100 µm resolution) referred to as boron images
B-1888/94 and B-1989/96 were acquired to evaluate the spatial distribution
of δ11B. The growth periods covered are B-1889/94: 1888-1894 and B-1989/96:
1989-1996 (Figure 3A).

2) Time series (2 mm long, 66 µm resolution) focussing on primary calcite
to evaluate the intra-annual variability of δ11B and to put better constraints
on the long-term trend observed between B-1889/94 and B-1989/96 (seemain
text). Three time series have been acquired for the years 1923-1927 (TS-
1923/27), 1961-1965 (TS-1961/65) and 1989-1992 (TS-1989/92) (Figure 4C).

In order to identify representative regions for LA-MC-ICP-MS boron
measurements calibrated Mg/Ca elemental maps were generated using
electron microprobe (EMP) analysis, a non-destructive microchemical sur-
face technique (technical details can be found in supporting information
S2). Mg/Ca data provided information for temperature reconstruction and
sample chronology (for data handling see supporting information S4).

The entire sample section (about 60x12 mm2) was first analyzed by EMP
in low resolution (30 µm) (see Figure 2A). Based on this overview map two
sample areas (covering the last decades of 19th and 20th century; M-1887/97:
1887-1897 andM-1988/98: 1988-1998) were selected for high-resolution EMP
mapping analysis (5x5 mm2, 5 µm resolution) (Figure 2B). Within these areas
the two boron images B-1888/94 and B-1989/96 have been acquired.

Further high-res EMP maps cover the areas used for the boron time
series analyses TS-1923/27, TS-1961/65 and TS-1989/92 (Figure 4A), each
representing at least 4-5 consecutive annual layers of undisturbed growth.

Details of the calculations used to convert δ11B data into pH can be
found in supporting information S4. pH is expressed as total scale. All
uncertainties in the text are 1SD.
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