28 research outputs found

    Nanoparticles and atherosclerosis : resolving the paradox

    Get PDF
    Air pollution is increasingly recognised as an important and modifiable risk factor for cardiovascular disease. Exposure is associated with a range of adverse cardiovascular events including hospital admissions with angina and myocardial infarction, and with cardiovascular death. The main arbiter of these adverse health effects appears to be combustion-derived nanoparticles that incorporate reactive organic and transition metal components. Through the induction of cellular oxidative stress and pro-inflammatory pathways, these nanoparticles exert detrimental effects on platelets, vasculature and myocardium, and can augment the development and progression of atherosclerosis. Over the last 10 years there has been remarkable progress in the development of targeted engineered nanoparticles as contrast agents to enhance cellular and molecular imaging. Ultra-small paramagnetic iron oxide (USPIO) nanoparticles (<100 nm) produce disruptions in the magnetic field of magnetic resonance imaging (MRI) scanners, and a decrease in image intensity in areas where the particles accumulate. USPIO particles are phagocytosed by cells of the monocyte-macrophage system throughout the body including within atheromatous plaques. USPIOs have regulatory approval in the United Kingdom for imaging lymph nodes in breast and prostate cancer as well as FDA approval for parenteral iron-replacement therapy in chronic kidney disease. There is great interest in developing USPIO and other nanoparticle contrast agents for imaging atherosclerosis. The delivery of engineered nanoparticles (ENPs) directly into the bloodstream to provide enhanced imaging of the unstable atheromatous plaque may assist in the diagnosis of plaque rupture and may ultimately permit targeted delivery of therapies directly to the site of vascular injury. However, these particles once blood-borne may alter monocyte-macrophage function and activate circulating platelets with adverse effects on clinical outcomes. Previously it has been shown that inhalation of combustion-derived nanoparticles results in increases in platelet-monocyte aggregation and thrombus formation in healthy volunteers. These combustion derived nanoparticles share structural similarities with engineered nanoparticles designed for intravascular infusion. This raises an obvious paradoxical question: can engineered nanoparticles designed for medical use mediate similar effects to combustion derived nanoparticles in susceptible populations? My thesis addresses this question and describes a series of complimentary experimental and clinical studies to investigate the effects of engineered nanoparticles on platelet function and thrombogenesis using commercial and clinically available nanoparticles. I found that cationic nanoparticles caused platelet activation and aggregation in vitro, whereas, anionic nanoparticles caused inflammation and up-regulated adhesion molecule ICAM-1 in monocyte derived macrophages indicating that nanoparticles have different toxicological properties in different biological conditions. Using an ex vivo model of thrombus formation, the Badimon chamber, I observed that USPIO nanoparticles added to flowing native whole blood in an extra-corporeal circuit increased platelet rich thrombus formation under high shear conditions compared to saline control in healthy volunteers. These studies were repeated in patients with abdominal aortic aneurysms who received intra-venous systemic infusions of USPIO to enhance MRI imaging. I demonstrated up-regulation in markers of platelet activation and more platelet rich thrombus formation in the Badimon chamber one hour following systemic delivery of USPIO. In summary I have demonstrated that medical nanoparticles influence platelet activation in patients with cardiovascular disease and have pro-thrombotic effects in an ex-vivo model of in both healthy persons and susceptible patients. In light of this data and to ensure the safe future development of engineered nanoparticles for medical use platelet activation assays and follow-up monitoring of patients should be considered routine in both the developmental and clinical stages of engineered nanoparticle use

    Haemolytic activity of soil from areas of varying podoconiosis endemicity in Ethiopia

    Get PDF
    Background: Podoconiosis, non-filarial elephantiasis, is a non-infectious disease found in tropical regions such as Ethiopia, localized in highland areas with volcanic soils cultivated by barefoot subsistence farmers. It is thought that soil particles can pass through the soles of the feet and taken up by the lymphatic system, leading to the characteristic chronic oedema of the lower legs that becomes disfiguring and disabling over time. Methods: The close association of the disease with volcanic soils led us to investigate the characteristics of soil samples in an endemic area in Ethiopia to identify the potential causal constituents. We used the in vitro haemolysis assay and compared haemolytic activity (HA) with soil samples collected in a non-endemic region of the same area in Ethiopia. We included soil samples that had been previously characterized, in addition we present other data describing the characteristics of the soil and include pure phase mineral standards as comparisons. Results: The bulk chemical composition of the soils were statistically significantly different between the podoconiosis-endemic and non-endemic areas, with the exception of CaO and Cr. Likewise, the soil mineralogy was statistically significant for iron oxide, feldspars, mica and chlorite. Smectite and kaolinite clays were widely present and elicited a strong HA, as did quartz, in comparison to other mineral phases tested, although no strong difference was found in HA between soils from the two areas. The relationship was further investigated with principle component analysis (PCA), which showed that a combination of an increase in Y, Zr and Al2O3, and a concurrent increase Fe2O3, TiO2, MnO and Ba in the soils increased HA. Conclusion: The mineralogy and chemistry of the soils influenced the HA, although the interplay between the components is complex. Further research should consider the variable biopersistance, hygroscopicity and hardness of the minerals and further characterize the nano-scale particles

    PAR4 (Protease-Activated Receptor 4) Antagonism with BMS-986120 Inhibits Human Ex Vivo Thrombus Formation

    Get PDF
    Objective-BMS-986120 is a novel first-in-class oral PAR4 (protease-Activated receptor 4) antagonist with potent and selective antiplatelet effects. We sought to determine for the first time, the effect of BMS-986120 on human ex vivo thrombus formation. Approach and Results-Forty healthy volunteers completed a phase 1 parallel-group PROBE trial (Prospective Randomized Open-Label Blinded End Point). Ex vivo platelet activation, platelet aggregation, and thrombus formation were measured at 0, 2, and 24 hours after (1) oral BMS-986120 (60 mg) or (2) oral aspirin (600 mg) followed at 18 hours with oral aspirin (600 mg) and oral clopidogrel (600 mg). BMS-986120 demonstrated highly selective and reversible inhibition of PAR4 agonist peptide (100 μM)-stimulated P-selectin expression, platelet-monocyte aggregates, and platelet aggregation (P<0.001 for all). Compared with pretreatment, total thrombus area (μm2/mm) at high shear was reduced by 29.2% (95% confidence interval, 18.3%-38.7%; P<0.001) at 2 hours and by 21.4% (9.3%-32.0%; P=0.002) at 24 hours. Reductions in thrombus formation were driven by a decrease in platelet-rich thrombus deposition: 34.8% (19.3%-47.3%; P<0.001) at 2 hours and 23.3% (5.1%-38.0%; P=0.016) at 24 hours. In contrast to aspirin alone, or in combination with clopidogrel, BMS-986120 had no effect on thrombus formation at low shear (P=nonsignificant). BMS-986120 administration was not associated with an increase in coagulation times or serious adverse events. Conclusions-BMS-986120 is a highly selective and reversible oral PAR4 antagonist that substantially reduces platelet-rich thrombus formation under conditions of high shear stress. Our results suggest PAR4 antagonism has major potential as a therapeutic antiplatelet strategy. Clinical Trial Registration-URL: http://www.clinicaltrials.gov. Unique identifier: NCT02439190

    Assessment of the Physicochemical Properties of Chrysotile-Containing Brake Debris Pertaining to Toxicity

    Get PDF
    Grinding and drilling of chrysotile asbestos-containing brake pads during the 20thcentury led torelease of chrysotile, resulting in varying levels of workplace exposures of mechanics. Despite expo-sures, excess risk of mesothelioma remains in doubt.Objectives:The toxicity of particulates is primarily derived through a combination of physicochemicalproperties and dose and as such this study aimed to determine properties of asbestos-containingbrake debris (BD) which may influence pathogenicity and potential of mesothelioma.Materials and Methods:Chrysotile-containing brake pads were ground–to reflect occupational activ-ities, aerosolized, and size-fractionated to isolate respirable fractions. Analysis of morphology, biodur-ability, surface charge, and interactions with macrophages were undertaken.Results:The respirable fraction of BD contained15–17% free chrysotile fibers thereby constituting asmall but relevant potential long fiber dose. Acellular biodurability studies showed rapid dissolutionand fragmentation of chrysotile fibers that was consistent for pure chrysotile control and BD samples.Conclusions:The long, free, respirable chrysotile fibers were present in BD, yet were of low bio-dur-ability; incubation in artificial lysosomal fluid led to destruction of free fibers

    Acute Cardiovascular Effects of Controlled Exposure to Dilute Petrodiesel and Biodiesel Exhaust in Healthy Volunteers: A Crossover Study

    Get PDF
    Abstract Background Air pollution derived from combustion is associated with considerable cardiorespiratory morbidity and mortality in addition to environmental effects. Replacing petrodiesel with biodiesel may have ecological benefits, but impacts on human health remain unquantified. The objective was to compare acute cardiovascular effects of blended and pure biodiesel exhaust exposure against known adverse effects of petrodiesel exhaust (PDE) exposure in human subjects. In two randomized controlled double-blind crossover studies, healthy volunteers were exposed to PDE or biodiesel exhaust for one hour. In study one, 16 subjects were exposed, on separate occasions, to PDE and 30% rapeseed methyl ester biodiesel blend (RME30) exhaust, aiming at PM10 300 μg/m3. In study two, 19 male subjects were separately exposed to PDE and exhaust from a 100% RME fuel (RME100) using similar engine load and exhaust dilution. Generated exhaust was analyzed for physicochemical composition and oxidative potential. Following exposure, vascular endothelial function was assessed using forearm venous occlusion plethysmography and ex vivo thrombus formation was assessed using a Badimon chamber model of acute arterial injury. Biomarkers of inflammation, platelet activation and fibrinolysis were measured in the blood. Results In study 1, PDE and RME30 exposures were at comparable PM levels (314 ± 27 μg/m3; (PM10 ± SD) and 309 ± 30 μg/m3 respectively), whereas in study 2, the PDE exposure concentrations remained similar (310 ± 34 μg/m3), but RME100 levels were lower in PM (165 ± 16 μg/m3) and PAHs, but higher in particle number concentration. Compared to PDE, PM from RME had less oxidative potential. Forearm infusion of the vasodilators acetylcholine, bradykinin, sodium nitroprusside and verapamil resulted in dose-dependent increases in blood flow after all exposures. Vasodilatation and ex vivo thrombus formation were similar following exposure to exhaust from petrodiesel and the two biodiesel formulations (RME30 and RME100). There were no significant differences in blood biomarkers or exhaled nitric oxide levels between exposures. Conclusions Despite differences in PM composition and particle reactivity, controlled exposure to biodiesel exhaust was associated with similar cardiovascular effects to PDE. We suggest that the potential adverse health effects of biodiesel fuel emissions should be taken into account when evaluating future fuel policies. Trial registration ClinicalTrials.gov, NCT01337882 /NCT01883466. Date of first enrollment March 11, 2011, registered April 19, 2011, i.e. retrospectively registered

    Inhaled Nanoparticles Accumulate at Sites of Vascular Disease

    Get PDF
    The development of engineered nanomaterials is growing exponentially, despite concerns over their potential similarities to environmental nanoparticles that are associated with significant cardiorespiratory morbidity and mortality. The mechanisms through which inhalation of nanoparticles could trigger acute cardiovascular events are emerging, but a fundamental unanswered question remains: Do inhaled nanoparticles translocate from the lung in man and directly contribute to the pathogenesis of cardiovascular disease? In complementary clinical and experimental studies, we used gold nanoparticles to evaluate particle translocation, permitting detection by high-resolution inductively coupled mass spectrometry and Raman microscopy. Healthy volunteers were exposed to nanoparticles by acute inhalation, followed by repeated sampling of blood and urine. Gold was detected in the blood and urine within 15 min to 24 h after exposure, and was still present 3 months after exposure. Levels were greater following inhalation of 5 nm (primary diameter) particles compared to 30 nm particles. Studies in mice demonstrated the accumulation in the blood and liver following pulmonary exposure to a broader size range of gold nanoparticles (2-200 nm primary diameter), with translocation markedly greater for particles <10 nm diameter. Gold nanoparticles preferentially accumulated in inflammation-rich vascular lesions of fat-fed apolipoproteinE-deficient mice. Furthermore, following inhalation, gold particles could be detected in surgical specimens of carotid artery disease from patients at risk of stroke. Translocation of inhaled nanoparticles into the systemic circulation and accumulation at sites of vascular inflammation provides a direct mechanism that can explain the link between environmental nanoparticles and cardiovascular disease and has major implications for risk management in the use of engineered nanomaterials

    Fire Simulation and Cardiovascular Health in Firefighters

    Get PDF
    BACKGROUND: Rates of myocardial infarction in firefighters are increased during fire suppression duties, and are likely to reflect a combination of factors including extreme physical exertion and heat exposure. We assessed the effects of simulated fire suppression on measures of cardiovascular health in healthy firefighters. METHODS: In an open-label randomized crossover study, 19 healthy firefighters (age, 41±7 years; 16 males) performed a standardized training exercise in a fire simulation facility or light duties for 20 minutes. After each exposure, ex vivo thrombus formation, fibrinolysis, platelet activation, and forearm blood flow in response to intra-arterial infusions of endothelial-dependent and -independent vasodilators were measured. RESULTS: After fire simulation training, core temperature increased (1.0±0.1°C) and weight reduced (0.46±0.14 kg, P<0.001 for both). In comparison with control, exposure to fire simulation increased thrombus formation under low-shear (73±14%) and high-shear (66±14%) conditions (P<0.001 for both) and increased platelet-monocyte binding (7±10%, P=0.03). There was a dose-dependent increase in forearm blood flow with all vasodilators (P<0.001), which was attenuated by fire simulation in response to acetylcholine (P=0.01) and sodium nitroprusside (P=0.004). This was associated with a rise in fibrinolytic capacity, asymptomatic myocardial ischemia, and an increase in plasma cardiac troponin I concentrations (1.4 [0.8–2.5] versus 3.0 [1.7–6.4] ng/L, P=0.010). CONCLUSIONS: Exposure to extreme heat and physical exertion during fire suppression activates platelets, increases thrombus formation, impairs vascular function, and promotes myocardial ischemia and injury in healthy firefighters. Our findings provide pathogenic mechanisms to explain the association between fire suppression activity and acute myocardial infarction in firefighters. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01812317

    Effect of wood smoke exposure on vascular function and thrombus formation in healthy fire fighters

    Get PDF
    Background: Myocardial infarction is the leading cause of death in fire fighters and has been linked with exposure to air pollution and fire suppression duties. We therefore investigated the effects of wood smoke exposure on vascular vasomotor and fibrinolytic function, and thrombus formation in healthy fire fighters. Methods: In a double-blind randomized cross-over study, 16 healthy male fire fighters were exposed to wood smoke (~1 mg/m3 particulate matter concentration) or filtered air for one hour during intermittent exercise. Arterial pressure and stiffness were measured before and immediately after exposure, and forearm blood flow was measured during intra-brachial infusion of endothelium-dependent and -independent vasodilators 4–6 hours after exposure. Thrombus formation was assessed using the ex vivo Badimon chamber at 2 hours, and platelet activation was measured using flow cytometry for up to 24 hours after the exposure. Results: Compared to filtered air, exposure to wood smoke increased blood carboxyhaemoglobin concentrations (1.3% versus 0.8%; P &lt; 0.001), but had no effect on arterial pressure, augmentation index or pulse wave velocity (P &gt; 0.05 for all). Whilst there was a dose-dependent increase in forearm blood flow with each vasodilator (P &lt; 0.01 for all), there were no differences in blood flow responses to acetylcholine, sodium nitroprusside or verapamil between exposures (P &gt; 0.05 for all). Following exposure to wood smoke, vasodilatation to bradykinin increased (P = 0.003), but there was no effect on bradykinin-induced tissue-plasminogen activator release, thrombus area or markers of platelet activation (P &gt; 0.05 for all). Conclusions: Wood smoke exposure does not impair vascular vasomotor or fibrinolytic function, or increase thrombus formation in fire fighters. Acute cardiovascular events following fire suppression may be precipitated by exposure to other air pollutants or through other mechanisms, such as strenuous physical exertion and dehydration.Originally included in thesis in manuscript form.</p
    corecore