863 research outputs found

    Cover crop introduction in a Mediterranean maize cropping system. Effects on soil variables and yield

    Get PDF
    Cover crops (CCs) are able to affect subsequent crop behaviour by acting on many soil variables and affecting the dynamics of different ecological processes. This study aimed to investigate the effects of introducing CC in continuous-maize cropping systems within Mediterranean areas. The experimental site was located in Central Italy, on a sandy loam and the research activity was carried out over two years (2019–2020). The two cropping systems in comparison differed from each other in terms of the CC cultivation: TR (treated, with CC) and CO (control, without CC). In both years, we observed a significant reduction (p < 0.05) of soil nitrate and water content for the TR system. In the shallowest layer (0–30 cm), nitrate content was reduced by up 80% and 65% (July 2019 and 2020), whereas soil moisture showed decreases ranging from 13% (July 2019) to 34% (May 2019). In 2019, the TR-maize (Zea mays L.) yield was statistically lower than CO (443 g dm m2), whereas in 2020 the yields of the two systems resulted statistically equivalent. This different behaviour can be explained with the serious delay in the CC sowing occurred in 2019 (12 December). Conversely, an increase in the apparent remaining N in the soil (+140 and +133 kg N ha1 for 2019 and 2020, respectively) and in the C (carbon) inputs (+4.78 and +7.39 t dm ha1 of biomass) were pointed out for the TR system. The large use of inputs in Mediterranean maize cropping systems limited some of the benefits from CCs, but their suitability has to be evaluated by considering all the involved effects, some of which need a long time to become appreciable

    Compounded perturbations in coastal areas: contrasting responses to nutrient enrichment and the regime of storm-related disturbance depend on life-history traits

    Get PDF
    1. Natural systems are exposed to compounded perturbations, whose changes in temporal variance can be as important as those in mean intensity for shaping the structure of assemblages. Specifically, climate-related physical disturbances and nutrient inputs due to natural and/or anthropogenic activities occur concomitantly, but experimental tests of the simultaneous effects of changes in the regime of more than one perturbation are generally lacking. Filling this gap is the key to understand ecological responses of natural assemblages to climate-related change in the intensity and temporal patterning of physical disturbance combined with other global stressors. 2. Responses to factorial manipulations of nutrient enrichment, mean intensity and temporal variability in storm-like mechanical disturbance were examined, using benthic assemblages of tide-pools as model system. 3. Response variables were mean abundance values and temporal variances of taxa with different life-traits. Consistent negative effects of disturbance intensity were observed for the mean cover of long-living taxa (algal canopies and the polychaete Sabellaria alveolata), whose temporal fluctuations were also reduced by more severe mechanical stress. More resilient taxa (ephemeral algae, mostly green of the genus Ulva) increased under enriched conditions, particularly when low-intensity events were irregularly applied over time. Opposite effects of disturbance intensity depending on nutrient availability occurred on filamentous algae (e.g. red of the genus Ceramium). This was probably due to the fact that, although nutrient enrichment stimulated the abundance of both algal groups, when this condition was combined with relatively mild physical disturbance the competitively superior ephemeral green algae tended to become dominant over filamentous red algae. The same did not occur under high intensity of disturbance since it likely damaged large, foliose fronds of Ulva-like forms more than small, filamentous fronds of Ceramium-like forms. Grazers were positively affected by nutrients, likely responding indirectly to more food available. 4. A direct relationship between the mean abundance of most organisms and their temporal fluctuations was documented. However, all organisms persisted throughout the study, even under experimental conditions associated to the largest temporal variation in their abundance, likely due to their ability to resist to/quickly recover from, the applied perturbations. Therefore, in systems with great recovery abilities of dominant organisms (e.g. rocky intertidal, grasslands), effects of traits of the regime of disturbance and nutrient enrichment may modulate the fluctuations of populations not through the elimination and substitution of species, but through changes in relative abundances of the same species. This contrasts with the theory that temporal variation in abundance would be directly related to the risk of local extinction. Present findings enable more accurate predictions of the consequences of climatic and non-climatic scenarios on the biodiversity of marine and terrestrial systems sharing analogous functional traits of organisms. Future more intense physical disturbances are expected to exert negative effects on slow-growing/recovering species (e.g. habitat-formers) irrespectively of the temporal patterning of the same disturbances and nutrient inputs. On the contrary, more resistant species (e.g. encrusting algae on rocky shores or below-ground vegetation in grasslands) are expected to benefit from intense physical disturbance. Species whose abundance is more directly related to the availability of nutrients (e.g. filamentous and ephemeral algae or herbs) are expected to generally increase under enriched conditions, but their ability to eventually become dominant would depend on their ability to grow fast and attain cover large enough to overwhelm any possible control of concomitant disturbance intensity on their abundance. If, such as in the present examined system, virtually all organisms can persist, over the temporal scale of the experiment, under any combination of physical disturbance and nutrient availability, the resulting overall diversity is not predicted to change drastically. Nevertheless, low-intensity events evenly distributed and high-intensity events irregularly distributed appear as the conditions supporting the highest richness of taxa, independently of the availability of nutrients

    Displacement power spectrum measurement of a macroscopic optomechanical system at thermal equilibrium

    Get PDF
    The mirror relative motion of a suspended Fabry-Perot cavity is studied in the frequency range 3-10 Hz. The experimental measurements presented in this paper, have been performed at the Low Frequency Facility, a high finesse optical cavity 1 cm long suspended to a mechanical seismic isolation system identical to that one used in the VIRGO experiment. The measured relative displacement power spectrum is compatible with a system at thermal equilibrium within its environmental. In the frequency region above 3 Hz, where seismic noise contamination is negligible, the measurement distribution is stationary and Gaussian, as expected for a system at thermal equilibrium. Through a simple mechanical model it is shown that: applying the fluctuation dissipation theorem the measured power spectrum is reproduced below 90 Hz and noise induced by external sources are below the measurement.Comment: 11 pages, 9 figures, 2 tables, to be submitte

    Quality Assurance on a custom SiPMs array for the Mu2e experiment

    Full text link
    The Mu2e experiment at Fermilab will search for the coherent Ό→e\mu \to e conversion on aluminum atoms. The detector system consists of a straw tube tracker and a crystal calorimeter. A pre-production of 150 Silicon Photomultiplier arrays for the Mu2e calorimeter has been procured. A detailed quality assur- ance has been carried out on each SiPM for the determination of its own operation voltage, gain, dark current and PDE. The measurement of the mean-time-to-failure for a small random sample of the pro-production group has been also completed as well as the determination of the dark current increase as a function of the ioninizing and non-ioninizing dose.Comment: 4 pages, 10 figures, conference proceeding for NSS-MIC 201

    The Mu2e undoped CsI crystal calorimeter

    Full text link
    The Mu2e experiment at Fermilab will search for Charged Lepton Flavor Violating conversion of a muon to an electron in an atomic field. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external system, surrounding the solenoid, to veto cosmic rays. The calorimeter plays an important role to provide: a) excellent particle identification capabilities; b) a fast trigger filter; c) an easier tracker track reconstruction. Two disks, located downstream of the tracker, contain 674 pure CsI crystals each. Each crystal is read out by two arrays of UV-extended SiPMs. The choice of the crystals and SiPMs has been finalized after a thorough test campaign. A first small scale prototype consisting of 51 crystals and 102 SiPM arrays has been exposed to an electron beam at the BTF (Beam Test Facility) in Frascati. Although the readout electronics were not the final, results show that the current design is able to meet the timing and energy resolution required by the Mu2e experiment.Comment: 6 pages, 8 figures, proceedings of the "Calorimetry for the high energy frontier (CHEF17)" conference, 2-6 October 2017, Lyon, Franc

    Design, status and perspective of the Mu2e crystal calorimeter

    Full text link
    The Mu2e experiment at Fermilab will search for the charged lepton flavor violating process of neutrino-less Ό→e\mu \to e coherent conversion in the field of an aluminum nucleus. Mu2e will reach a single event sensitivity of about 2.5⋅10−172.5\cdot 10^{-17} that corresponds to four orders of magnitude improvements with respect to the current best limit. The detector system consists of a straw tube tracker and a crystal calorimeter made of undoped CsI coupled with Silicon Photomultipliers. The calorimeter was designed to be operable in a harsh environment where about 10 krad/year will be delivered in the hottest region and work in presence of 1 T magnetic field. The calorimeter role is to perform ÎŒ\mu/e separation to suppress cosmic muons mimiking the signal, while providing a high level trigger and a seeding the track search in the tracker. In this paper we present the calorimeter design and the latest R&\&D results.Comment: 4 pages, conference proceeding for a presentation held at TIPP'2017. To be published on Springer Proceedings in Physic

    Resonance and absorption spectra of the Schwarzschild black hole for massive scalar perturbations: a complex angular momentum analysis

    Full text link
    We reexamine some aspects of scattering by a Schwarzschild black hole in the framework of complex angular momentum techniques. More precisely, we consider, for massive scalar perturbations, the high-energy behavior of the resonance spectrum and of the absorption cross section by emphasizing analytically the role of the mass. This is achieved (i) by deriving asymptotic expansions for the Regge poles of the SS-matrix and then for the associated weakly damped quasinormal frequencies and (ii) by taking into account the analytic structure of the greybody factors which allows us to extract by resummation the physical information encoded in the absorption cross section.Comment: v2: Minor changes to match the published version. v3: Typos correcte

    MEG Upgrade Proposal

    Full text link
    We propose the continuation of the MEG experiment to search for the charged lepton flavour violating decay (cLFV) \mu \to e \gamma, based on an upgrade of the experiment, which aims for a sensitivity enhancement of one order of magnitude compared to the final MEG result, down to the 6×10−146 \times 10^{-14} level. The key features of this new MEG upgrade are an increased rate capability of all detectors to enable running at the intensity frontier and improved energy, angular and timing resolutions, for both the positron and photon arms of the detector. On the positron-side a new low-mass, single volume, high granularity tracker is envisaged, in combination with a new highly segmented, fast timing counter array, to track positron from a thinner stopping target. The photon-arm, with the largest liquid xenon (LXe) detector in the world, totalling 900 l, will also be improved by increasing the granularity at the incident face, by replacing the current photomultiplier tubes (PMTs) with a larger number of smaller photosensors and optimizing the photosensor layout also on the lateral faces. A new DAQ scheme involving the implementation of a new combined readout board capable of integrating the diverse functions of digitization, trigger capability and splitter functionality into one condensed unit, is also under development. We describe here the status of the MEG experiment, the scientific merits of the upgrade and the experimental methods we plan to use.Comment: A. M. Baldini and T. Mori Spokespersons. Research proposal submitted to the Paul Scherrer Institute Research Committee for Particle Physics at the Ring Cyclotron. 131 Page

    Automatic diagnosis of newly emerged heart failure from serial electrocardiography by repeated structuring & learning procedure

    Get PDF
    Heart failure (HF) diagnosis, typically visually performed by serial electrocardiography, may be supported by machine-learning approaches. Repeated structuring & learning procedure (RS & LP) is a constructive algorithm able to automatically create artificial neural networks (ANN); it relies on three parameters, namely maximal number of hidden layers (MNL), initializations (MNI) and confirmations (MNC), arbitrarily set by the user. The aim of this study is to evaluate RS & LP robustness to varying values of parameters and to identify an optimized combination of parameter values for HF diagnosis. To this aim, the Leiden University Medical Center HF data-base was used. The database is constituted by 129 serial ECG pairs acquired in patients who experienced myocardial infarction; 48 patients developed HF at follow-up (cases), while 81 remained clinically stable (controls). Overall, 15 ANNs were created by considering 13 serial ECG features as inputs (extracted from each serial ECG pair), 2 classes as outputs (cases/controls), and varying values of MNL (1, 2, 3, 4 and 10), MNI (50, 250, 500, 1000 and 1500) and MNC (2, 5, 10, 20 and 50). The area under the curve (AUC) of the receiver operating characteristic did not significantly vary with varying parameter values (P >= 0.09). The optimized combination of parameter values, identified as the one showing the highest AUC, was obtained for MNL = 3, MNI = 500 and MNC = 50 (AUC = 86 %; ANN structure: 3 hidden layers of 14, 14 and 13 neurons, respectively). Thus, RS & LP is robust, and the optimized ANN represents a potentially useful clinical tool for a reliable auto-matic HF diagnosis.Cardiolog

    Come back Marshall, all is forgiven? : Complexity, evolution, mathematics and Marshallian exceptionalism

    Get PDF
    Marshall was the great synthesiser of neoclassical economics. Yet with his qualified assumption of self-interest, his emphasis on variation in economic evolution and his cautious attitude to the use of mathematics, Marshall differs fundamentally from other leading neoclassical contemporaries. Metaphors inspire more specific analogies and ontological assumptions, and Marshall used the guiding metaphor of Spencerian evolution. But unfortunately, the further development of a Marshallian evolutionary approach was undermined in part by theoretical problems within Spencer's theory. Yet some things can be salvaged from the Marshallian evolutionary vision. They may even be placed in a more viable Darwinian framework.Peer reviewedFinal Accepted Versio
    • 

    corecore