16 research outputs found

    High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    Get PDF
    It has been hypothesized that predecessors of today’s bryophytes significantly increased global chemical weathering in the Late Ordovician, thus reducing atmospheric CO2 concentration and contributing to climate cooling and an interval of glaciations. Studies that try to quantify the enhancement of weathering by non-vascular vegetation, however, are usually limited to small areas and low numbers of species, which hampers extrapolating to the global scale and to past climatic conditions. Here we present a spatially explicit modelling approach to simulate global weathering by non-vascular vegetation in the Late Ordovician. We estimate a potential global weathering flux of 2.8 (km3 rock) yr−1, defined here as volume of primary minerals affected by chemical transformation. This is around three times larger than today’s global chemical weathering flux. Moreover, we find that simulated weathering is highly sensitive to atmospheric CO2 concentration. This implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate

    Intermatrix synthesis: easy technique permitting preparation of polymer-stabilized nanoparticles with desired composition and structure

    Get PDF
    The synthesis of polymer-stabilized nanoparticles (PSNPs) can be successfully carried out using intermatrix synthesis (IMS) technique, which consists in sequential loading of the functional groups of a polymer with the desired metal ions followed by nanoparticles (NPs) formation stage. After each metal-loading-NPs-formation cycle, the functional groups of the polymer appear to be regenerated. This allows for repeating the cycles to increase the NPs content or to obtain NPs with different structures and compositions (e.g. core-shell or core-sandwich). This article reports the results on the further development of the IMS technique. The formation of NPs has been shown to proceed by not only the metal reduction reaction (e.g. Cu0-NPs) but also by the precipitation reaction resulting in the IMS of PSNPs of metal salts (e.g. CuS-NPs)
    corecore