24 research outputs found

    Triple valve infective endocarditis - a late diagnosis

    Get PDF
    Behcet\u27s disease is a systemic vasculitis of unknown aetiology with cardiac involvement as well as damage to other organs. Whether the sterile valvular inflammation which occurs in this autoimmune disease predisposes to bacterial adhesion and infective endocarditis is not yet established. We present the case of a patient with Behcet disease in which transthoracic echocardiography showed mobile masses on the aortic, tricuspid, and mitral valves, leading to multivalvular infective endocarditis diagnosis, possibly in the context of valvular inflammation. The case presented in this article confirms observation of other studies, namely that ultrasonography plays an important role in the diagnosis and evaluation of rheumatic diseases and permits optimal management in daily practice

    Infected pancreatic necrosis: outcomes and clinical predictors of mortality. A post hoc analysis of the MANCTRA-1 international study

    Get PDF
    : The identification of high-risk patients in the early stages of infected pancreatic necrosis (IPN) is critical, because it could help the clinicians to adopt more effective management strategies. We conducted a post hoc analysis of the MANCTRA-1 international study to assess the association between clinical risk factors and mortality among adult patients with IPN. Univariable and multivariable logistic regression models were used to identify prognostic factors of mortality. We identified 247 consecutive patients with IPN hospitalised between January 2019 and December 2020. History of uncontrolled arterial hypertension (p = 0.032; 95% CI 1.135-15.882; aOR 4.245), qSOFA (p = 0.005; 95% CI 1.359-5.879; aOR 2.828), renal failure (p = 0.022; 95% CI 1.138-5.442; aOR 2.489), and haemodynamic failure (p = 0.018; 95% CI 1.184-5.978; aOR 2.661), were identified as independent predictors of mortality in IPN patients. Cholangitis (p = 0.003; 95% CI 1.598-9.930; aOR 3.983), abdominal compartment syndrome (p = 0.032; 95% CI 1.090-6.967; aOR 2.735), and gastrointestinal/intra-abdominal bleeding (p = 0.009; 95% CI 1.286-5.712; aOR 2.710) were independently associated with the risk of mortality. Upfront open surgical necrosectomy was strongly associated with the risk of mortality (p < 0.001; 95% CI 1.912-7.442; aOR 3.772), whereas endoscopic drainage of pancreatic necrosis (p = 0.018; 95% CI 0.138-0.834; aOR 0.339) and enteral nutrition (p = 0.003; 95% CI 0.143-0.716; aOR 0.320) were found as protective factors. Organ failure, acute cholangitis, and upfront open surgical necrosectomy were the most significant predictors of mortality. Our study confirmed that, even in a subgroup of particularly ill patients such as those with IPN, upfront open surgery should be avoided as much as possible. Study protocol registered in ClinicalTrials.Gov (I.D. Number NCT04747990)

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Calculation and Exploitation of Active Anti-roll System

    Full text link
    Today, more and more control systems of motion, are applied to different ships. Between the movement of the ship, the movement by rotation causes serious damage to the ship's equipment and their performance. There have been many efforts to invent or create certain equipment in order to eliminate these adverse effects. However, few types of equipment have had the same impact on the stabilization of the rollers and systems with active wings stabilizers. In the recent years have been carried out more research for the improvement of systems of the stabilizer fins. The anti-roll fins are a stabilization, reducing the rolling in the hull of the vessel using the elevator fin general designed on both borders of the keel

    Analytical Perspectives in the Study of Polyvalent Interactions of Free and Surface-Bound Oligonucleotides and Their Implications in Affinity Biosensing

    No full text
    The high affinity and/or selectivity of oligonucleotide-mediated binding offers a myriad of therapeutical and analytical applications, whose rational design implies an accurate knowledge of the involved molecular mechanisms, concurring equilibrium processes and key affinity parameters. Oligonucleotide-functionalized gold surfaces or nanostructures are regularly employed analytical platforms for the development of label-free optical or electrochemical biosensors, and recently, novel detection platform designs have been increasingly considering the synergistic effect of polyvalent binding, involving the simultaneous interaction of two or several oligonucleotide strands. Considering the general lack of studies involving ternary single-stranded DNA (ssDNA) interactions, a complementary analytical workflow involving capillary gel electrophoretic (CGE) mobility shift assay, microcalorimetry and computational modeling has been deployed for the characterization of a series of free and surface-bound binary and ternary oligonucleotide interactions. As a proof of concept, the DNA analogue of MicroRNA 21 (miR21), a well-known oncogenic short MicroRNA (miRNA) sequence, has been chosen as a target molecule, simulating limiting-case scenarios involved in dual molecular recognition models exploited in affinity (bio)sensing. Novel data for the characterization of oligonucleotide interacting modules is revealed, offering a fast and complete mapping of the specific or non-specific, often competing, binary and ternary order interactions in dynamic equilibria, occurring between various free and metal surface-bound oligonucleotides

    Cardiac masses and the role of imaging in their diagnostic

    No full text
    Myxomas are the most common primary tumors of the adult heart and should be considered in the differential diagnosis of intracavitary cardiac masses, along with thrombi and vegetations

    Analytical Perspectives in the Study of Polyvalent Interactions of Free and Surface-Bound Oligonucleotides and Their Implications in Affinity Biosensing

    No full text
    The high affinity and/or selectivity of oligonucleotide-mediated binding offers a myriad of therapeutical and analytical applications, whose rational design implies an accurate knowledge of the involved molecular mechanisms, concurring equilibrium processes and key affinity parameters. Oligonucleotide-functionalized gold surfaces or nanostructures are regularly employed analytical platforms for the development of label-free optical or electrochemical biosensors, and recently, novel detection platform designs have been increasingly considering the synergistic effect of polyvalent binding, involving the simultaneous interaction of two or several oligonucleotide strands. Considering the general lack of studies involving ternary single-stranded DNA (ssDNA) interactions, a complementary analytical workflow involving capillary gel electrophoretic (CGE) mobility shift assay, microcalorimetry and computational modeling has been deployed for the characterization of a series of free and surface-bound binary and ternary oligonucleotide interactions. As a proof of concept, the DNA analogue of MicroRNA 21 (miR21), a well-known oncogenic short MicroRNA (miRNA) sequence, has been chosen as a target molecule, simulating limiting-case scenarios involved in dual molecular recognition models exploited in affinity (bio)sensing. Novel data for the characterization of oligonucleotide interacting modules is revealed, offering a fast and complete mapping of the specific or non-specific, often competing, binary and ternary order interactions in dynamic equilibria, occurring between various free and metal surface-bound oligonucleotides

    Proteomic patterns in glomerular research, a laser capture microdissection and liquid chromatography-tandem mass spectrometry approach

    No full text
    Introduction: Molecular techniques have the potential to shed light on glomerular diseases that conventional renal pathology may be unable to reveal. The aim of this study was to investigate whether proteomic patterns of glomeruli obtained from kidney biopsies can differentiate between minimal change disease (MCD), focal segmental glomerulosclerosis (FSGS) and control groups (CTR)

    Chemometric Comparison and Classification of 22 Apple Genotypes Based on Texture Analysis and Physico-Chemical Quality Attributes

    No full text
    The large number of cultivars belonging to the cultivated apple (Malus × domestica Borkh.) reflects an extremely wide range of variability, including for fruit quality traits. To evaluate some characteristics of fruit quality, 22 apple genotypes were selected from a collection of germplasms containing more than 600 accessions, based on different considerations, including the use of fruits (dessert, cooking, processing, juice, cider, multipurpose). The mean water content of the studied apple genotypes was 85.05%, with a coefficient of variation (CV) of 2.74%; the mean ash content was 2.32% with a CV of 22.1%, and the mean total soluble solids was 16.22% with a CV of 17.78%, indicating a relatively small difference between genotypes for these indices. On the contrary, relatively large differences were registered between genotypes for fruit weight, volume, and titratable acidity with means of 119.52 g, 155 mL, and 0.55% malic acid, and CVs of 35.17%, 34.58%, and 54.3%, respectively. The results showed that peel hardness varied between 3.80 and 13.69 N, the toughness between 0.2 and 1.07 mm, the flesh hardness between 0.97 and 4.76 N, and the hardness work between 6.88 and 27.84 mJ. The current study can emphasize the possibility of choosing the appropriate apple cultivars to cross in the breeding process and how future strategies can help apple breeders select breeding parents, which are essential key steps when breeding new apple cultivars. In addition, multivariate analysis has proven to be a useful tool in assessing the relationships between Malus genetic resources

    Hyperuricemia remodels the serum proteome toward a higher inflammatory state

    No full text
    Summary: Gout is an autoinflammatory disease triggered by a complex innate immune response to MSU crystals and inflammatory triggers. While hyperuricemia is an obligatory risk factor for the development of gout, the majority of individuals with hyperuricemia never develop gout but have an increased risk of developing cardiometabolic disorders. Current management of gout aims at MSU crystal dissolution by lowering serum urate. We apply a targeted proteomic analysis, using Olink inflammation panel, to a large group of individuals with gout, asymptomatic hyperuricemia, and normouricemic controls, and we show a urate-driven inflammatory signature. We add in vivo evidence of persistent immune activation linked to urate exposure and describe immune pathways involved in the pathogenesis of gout. Our results support a pro-inflammatory effect of asymptomatic hyperuricemia and pave the way for new research into targetable mechanisms in gout and cardiometabolic complications of asymptomatic hyperuricemia
    corecore