37 research outputs found

    The identification of archaeological eggshell using peptide markers

    Get PDF
    Avian eggshell survives well in alkaline and neutral soils, but its potential as an archaeological resource remains largely unexplored, mainly due to difficulties in its identification. Here we exploit the release of novel bird genomes and, for the first time on eggshell, use MALDI-ToF (matrix-assisted laser desorption ionisation-time of flight) mass spectrometry in combination with peptide sequencing by LC-MS/MS. The eggshell proteome is revealed as unexpectedly complex, with 5755 proteins identified for a reference collection comprising 23 bird species. We determined 782 m/z markers useful for eggshell identification, 583 of which could be assigned to known eggshell peptide sequences. These were used to identify eggshell fragments recovered from a medieval site at Freeschool Lane, Leicester. We discuss the specificity of the peptide markers and highlight the importance of assessing the level of taxonomic identification achievable for archaeological interpretation

    Lives before and after Stonehenge: An osteobiographical study of four prehistoric burials recently excavated from the Stonehenge World Heritage Site

    Get PDF
    Osteobiographies of four individuals whose skeletal remains were recovered in 2015–16 from the Stonehenge World Heritage Site are constructed, drawing upon evidence from funerary taphonomy, radiocarbon dating, osteological study, stable isotope analyses, and microscopic and biomolecular analyses of dental calculus. The burials comprise an adult from the Middle Neolithic period, immediately prior to the building of Stonehenge, and two adults and a perinatal infant dating from the Middle Bronze Age, shortly after the monument ceased to be structurally modified. The two Middle Bronze Age adults were closely contemporary, but differed from one another in ancestry, appearance and geographic origin (key components of ethnicity). They were nevertheless buried in very similar ways. This suggests that aspects they held in common (osteological analysis suggests perhaps a highly mobile lifestyle) were more important in determining the manner of deposition of their bodies than any differences between them in ethnicity. One of these individuals probably came from outside Britain, as perhaps did the Middle Neolithic adult. This would be consistent with the idea that the Stonehenge landscape had begun to draw people to it from beyond Britain before Stonehenge was constructed and that it continued to do so after structural modification to the monument had ceased

    Comparative life cycle environmental and economic assessment of anaerobic membrane bioreactor and disinfection for reclaimed water reuse in agricultural irrigation: A case study in Italy

    Get PDF
    Supplementary data are available online at https://www.sciencedirect.com/science/article/pii/S0959652621004212#appsec1 .Reuse of treated wastewater for irrigation purposes is a measure to reduce water stress and overexploitation of freshwater resources. This study aims to investigate the environmental and economic impacts of a current conventional wastewater treatment plant (WWTP) in Peschiera Borromeo (Milan, Italy), and compare possible scenarios to enable reclaimed water reuse for agriculture. Accordingly, we propose alternative disinfection methods (i.e. enhanced UV, peracetic acid) and replace conventional activated sludge (CAS) with upflow anaerobic sludge blanket (UASB) for biological treatment and use anaerobic membrane bioreactor (AnMBR) as the tertiary treatment. Life cycle assessment (LCA) and life cycle costing (LCC) were implemented on the existing full-scale wastewater treatment line and the hypothetical scenarios. In most cases, the impact categories are primarily influenced by fertilizer application and direct emissions to water (i.e. nutrients and heavy metals). The baseline scenario appears to have the largest environmental impact, except for freshwater eutrophication, human ecotoxicity and terrestrial ecotoxicity. As expected, water depletion is the most apparent impact category between the baseline and proposed scenarios. The UASB + AnMBR scenario gives relatively higher environmental benefits than the other proposed scenarios in climate change (−28%), fossil fuel depletion (−31%), mineral resource depletion (−52%), and terrestrial ecotoxicity compared to the baseline. On the other hand, the highest impact on freshwater eutrophication is also obtained by this scenario since the effluent from the anaerobic processes is rich in nutrients. Moreover, investment and operational costs vary remarkably between the scenarios, and the highest overall costs are obtained for the UASB + AnMBR line mostly due to the replacement of membrane modules (24% of the total cost). The results highlighted the importance of the life cycle approach to support decision making when considering possible upgrading scenarios in WWTPs for water reuse.This study was carried out within the framework of the ‘Digital-Water.City - DWC’ Innovation Action which has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 820954. Alessia Foglia kindly acknowledges the Fondazione Cariverona for funding her PhD scholarship

    Dental calculus and isotopes provide direct evidence of fish and plant consumption in Mesolithic Mediterranean

    Get PDF
    In this contribution we dismantle the perceived role of marine resources and plant foods in the subsistence economy of Holocene foragers of the Central Mediterranean using a combination of dental calculus and stable isotope analyses. The discovery of fish scales and flesh fragments, starch granules and other plant and animal micro-debris in the dental calculus of a Mesolithic forager dated to the end of the 8th millenium BC and buried in the Vlakno Cave on Dugi Otok Island in the Croatian Archipelago demonstrates that marine resources were regularly consumed by the individual together with a variety of plant foods. Since previous stable isotope data in the Eastern Adriatic and the Mediterranean region emphasises that terrestrial-based resources contributed mainly to Mesolithic diets in the Mediterranean Basin, our results provide an alternative view of the dietary habits of Mesolithic foragers in the Mediterranean region based on a combination of novel methodologies and data

    Middle Neolithic pits and a burial at West Amesbury, Wiltshire

    Get PDF
    Excavations on the south-eastern slopes of King Barrow Ridge, 1.5 km east of Stonehenge, revealed five pits, a grave and other features of Middle Neolithic date. Analysis of the pit assemblages and the partial inhumation interred in the grave has provided insights into lifeways in this landscape in the late fourth millennium cal BC. Evidence suggests that the area was visited by a pastoralist, mobile community on a semi-regular basis for a significant period, in late autumn or winter. Selected remnants of craft-working and consumption were deposited in pits, before deliberate infilling. These depositions repeatedly memorialised activity on the hillside at a time of contemporary activity elsewhere on King Barrow Ridge and at the future site of Stonehenge. Middle Neolithic pits are present in significant numbers across King Barrow Ridge, and alongside pits in the Durrington area, form one of the densest concentrations of such activity in the region. Long distance mobility is suggested by the possible Irish origins of the inhumation, the first Middle Neolithic individual excavated in the environs of Stonehenge. Whilst of significance for understanding the Middle Neolithic in the WHS and the region, this research also hints at the roots of Late Neolithic monumentalisation of this landscape

    Multidisciplinary investigations of the diets of two post-medieval populations from London using stable isotopes and microdebris analysis

    Get PDF
    This paper presents the first multi-tissue study of diet in post-medieval London using both the stable light isotope analysis of carbon and nitrogen and analysis of microdebris in dental calculus. Dietary intake was explored over short and long timescales. Bulk bone collagen was analysed from humans from the Queen’s Chapel of the Savoy (QCS) (n = 66) and the St Barnabas/St Mary Abbots (SB) (n = 25). Incremental dentine analysis was performed on the second molar of individual QCS1123 to explore childhood dietary intake. Bulk hair samples (n = 4) were sampled from adults from QCS, and dental calculus was analysed from four other individuals using microscopy. In addition, bone collagen from a total of 46 animals from QCS (n = 11) and the additional site of Prescot Street (n = 35) was analysed, providing the first animal dietary baseline for post-medieval London. Overall, isotopic results suggest a largely C3-based terrestrial diet for both populations, with the exception of QCS1123 who exhibited values consistent with the consumption of C4 food sources throughout childhood and adulthood. The differences exhibited in ή15Ncoll across both populations likely reflect variations in diet due to social class and occupation, with individuals from SB likely representing wealthier individuals consuming larger quantities of animal and marine fish protein. Microdebris analysis results were limited but indicate the consumption of domestic cereals. This paper demonstrates the utility of a multidisciplinary approach to investigate diet across long and short timescales to further our understanding of variations in social status and mobility

    The dental calculus metabolome in modern and historic samples.

    Get PDF
    INTRODUCTION: Dental calculus is a mineralized microbial dental plaque biofilm that forms throughout life by precipitation of salivary calcium salts. Successive cycles of dental plaque growth and calcification make it an unusually well-preserved, long-term record of host-microbial interaction in the archaeological record. Recent studies have confirmed the survival of authentic ancient DNA and proteins within historic and prehistoric dental calculus, making it a promising substrate for investigating oral microbiome evolution via direct measurement and comparison of modern and ancient specimens. OBJECTIVE: We present the first comprehensive characterization of the human dental calculus metabolome using a multi-platform approach. METHODS: Ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) quantified 285 metabolites in modern and historic (200 years old) dental calculus, including metabolites of drug and dietary origin. A subset of historic samples was additionally analyzed by high-resolution gas chromatography-MS (GC-MS) and UPLC-MS/MS for further characterization of metabolites and lipids. Metabolite profiles of modern and historic calculus were compared to identify patterns of persistence and loss. RESULTS: Dipeptides, free amino acids, free nucleotides, and carbohydrates substantially decrease in abundance and ubiquity in archaeological samples, with some exceptions. Lipids generally persist, and saturated and mono-unsaturated medium and long chain fatty acids appear to be well-preserved, while metabolic derivatives related to oxidation and chemical degradation are found at higher levels in archaeological dental calculus than fresh samples. CONCLUSIONS: The results of this study indicate that certain metabolite classes have higher potential for recovery over long time scales and may serve as appropriate targets for oral microbiome evolutionary studies

    Pathogens and host immunity in the ancient human oral cavity.

    Get PDF
    Calcified dental plaque (dental calculus) preserves for millennia and entraps biomolecules from all domains of life and viruses. We report the first, to our knowledge, high-resolution taxonomic and protein functional characterization of the ancient oral microbiome and demonstrate that the oral cavity has long served as a reservoir for bacteria implicated in both local and systemic disease. We characterize (i) the ancient oral microbiome in a diseased state, (ii) 40 opportunistic pathogens, (iii) ancient human-associated putative antibiotic resistance genes, (iv) a genome reconstruction of the periodontal pathogen Tannerella forsythia, (v) 239 bacterial and 43 human proteins, allowing confirmation of a long-term association between host immune factors, 'red complex' pathogens and periodontal disease, and (vi) DNA sequences matching dietary sources. Directly datable and nearly ubiquitous, dental calculus permits the simultaneous investigation of pathogen activity, host immunity and diet, thereby extending direct investigation of common diseases into the human evolutionary past
    corecore