92 research outputs found

    Differential gene expression profiles are dependent upon method of peripheral blood collection and RNA isolation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA isolation and purification steps greatly influence the results of gene expression profiling. There are two commercially available products for whole blood RNA collection, PAXgene™ and Tempus™ blood collection tubes, and each comes with their own RNA purification method. In both systems the blood is immediately lysed when collected into the tube and RNA stabilized using proprietary reagents. Both systems enable minimal blood handling procedures thus minimizing the risk of inducing changes in gene expression through blood handling or processing. Because the RNA purification steps could influence the total RNA pool, we examined the impact of RNA isolation, using the PAXgene™ or Tempus™ method, on gene expression profiles.</p> <p>Results</p> <p>Using microarrays as readout of RNA from stimulated whole blood we found a common set of expressed transcripts in RNA samples from either PAXgene™ or Tempus™. However, we also found several to be uniquely expressed depending on the type of collection tube, suggesting that RNA purification methods impact results of differential gene expression profiling. Specifically, transcripts for several known PHA-inducible genes, including IFNγ, IL13, IL2, IL3, and IL4 were found to be upregulated in stimulated vs. control samples when RNA was isolated using the ABI Tempus™ method, but not using the PAXgene™ method (p < 0.01, FDR corrected). Sequenom Quantiative Gene Expression (QGE) (SanDiego, CA) measures confirmed IL2, IL4 and IFNγ up-regulation in Tempus™ purified RNA from PHA stimulated cells while only IL2 was up-regulated using PAXgene™ purified (p < 0.05).</p> <p>Conclusion</p> <p>Here, we demonstrate that peripheral blood RNA isolation methods can critically impact differential expression results, particularly in the clinical setting where fold-change differences are typically small and there is inherent variability within biological cohorts. A modified method based upon the Tempus™ system was found to provide high yield, good post-hybridization array quality, low variability in expression measures and was shown to produce differential expression results consistent with the predicted immunologic effects of PHA stimulation.</p

    Galectin-1 Deactivates Classically Activated Microglia and Protects from Inflammation-Induced Neurodegeneration

    Get PDF
    SummaryInflammation-mediated neurodegeneration occurs in the acute and the chronic phases of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Classically activated (M1) microglia are key players mediating this process. Here, we identified Galectin-1 (Gal1), an endogenous glycan-binding protein, as a pivotal regulator of M1 microglial activation that targets the activation of p38MAPK-, CREB-, and NF-κB-dependent signaling pathways and hierarchically suppresses downstream proinflammatory mediators, such as iNOS, TNF, and CCL2. Gal1 bound to core 2 O-glycans on CD45, favoring retention of this glycoprotein on the microglial cell surface and augmenting its phosphatase activity and inhibitory function. Gal1 was highly expressed in the acute phase of EAE, and its targeted deletion resulted in pronounced inflammation-induced neurodegeneration. Adoptive transfer of Gal1-secreting astrocytes or administration of recombinant Gal1 suppressed EAE through mechanisms involving microglial deactivation. Thus, Gal1-glycan interactions are essential in tempering microglial activation, brain inflammation, and neurodegeneration, with critical therapeutic implications for MS

    Common Genetic Variants Modulate Pathogen-Sensing Responses in Human Dendritic Cells

    Get PDF
    Little is known about how human genetic variation affects the responses to environmental stimuli in the context of complex diseases. Experimental and computational approaches were applied to determine the effects of genetic variation on the induction of pathogen-responsive genes in human dendritic cells. We identified 121 common genetic variants associated in cis with variation in expression responses to Escherichia coli lipopolysaccharide, influenza, or interferon-β (IFN-β). We localized and validated causal variants to binding sites of pathogen-activated STAT (signal transducer and activator of transcription) and IRF (IFN-regulatory factor) transcription factors. We also identified a common variant in IRF7 that is associated in trans with type I IFN induction in response to influenza infection. Our results reveal common alleles that explain interindividual variation in pathogen sensing and provide functional annotation for genetic variants that alter susceptibility to inflammatory diseases.National Human Genome Research Institute (U.S.) (Grant P50 HG006193)National Institutes of Health (U.S.). Pioneer Award (DP1 CA174427)Howard Hughes Medical InstituteNational Institutes of Health (U.S.) (Grant HG004037)National Institutes of Health (U.S.). Pioneer Award (DP1 MH100706)National Institutes of Health (U.S.) (Transformative R01 Grant R01 DK097768)W. M. Keck FoundationMcKnight FoundationMerkin, Richard N.Damon Runyon Cancer Research FoundationSearle Scholars ProgramSimons Foundatio

    Single-cell multi-omics reveals dyssynchrony of the innate and adaptive immune system in progressive COVID-19.

    Get PDF
    Dysregulated immune responses against the SARS-CoV-2 virus are instrumental in severe COVID-19. However, the immune signatures associated with immunopathology are poorly understood. Here we use multi-omics single-cell analysis to probe the dynamic immune responses in hospitalized patients with stable or progressive course of COVID-19, explore V(D)J repertoires, and assess the cellular effects of tocilizumab. Coordinated profiling of gene expression and cell lineage protein markers shows that S100

    Etude des mecanismes biochimiques mis en jeu au cours de l'acquisition d'une activite antitumorale par les macrophages peritoneaux de souris

    No full text
    SIGLEAvailable from INIST (FR), Document Supply Service, under shelf-number : TD 79352 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Single-Cell Multiomics Analysis for Drug Discovery

    No full text
    Given the heterogeneity seen in cell populations within biological systems, analysis of single cells is necessary for studying mechanisms that cannot be identified on a bulk population level. There are significant variations in the biological and physiological function of cell populations due to the functional differences within, as well as between, single species as a result of the specific proteome, transcriptome, and metabolome that are unique to each individual cell. Single-cell analysis proves crucial in providing a comprehensive understanding of the biological and physiological properties underlying human health and disease. Omics technologies can help to examine proteins (proteomics), RNA molecules (transcriptomics), and the chemical processes involving metabolites (metabolomics) in cells, in addition to genomes. In this review, we discuss the value of multiomics in drug discovery and the importance of single-cell multiomics measurements. We will provide examples of the benefits of applying single-cell omics technologies in drug discovery and development. Moreover, we intend to show how multiomics offers the opportunity to understand the detailed events which produce or prevent disease, and ways in which the separate omics disciplines complement each other to build a broader, deeper knowledge base

    Fingolimod modulates T cell phenotype and regulatory T cell plasticity in vivo

    No full text
    Fingolimod is an approved therapeutic option for patients with relapsing-remitting multiple sclerosis that primarily functions by sequestering T cells in lymph nodes inhibiting their egress to the central nervous system. However, recent data suggests that Fingolimod may also directly affect the immune cell function. Here we examined the in vivo effects of Fingolimod in modulating the phenotype and function of T cell and Foxp3 regulatory T cell populations in patients with multiple sclerosis under Fingolimod treatment. Besides decreasing the cell numbers in peripheral blood and sera levels of pro-inflammatory cytokines, Fingolimod inhibited the expression of Th1 and Th17 cytokines on CD4+ T cells and increased the expression of exhaustion markers. Furthermore, treatment increased the frequency of regulatory T cells in blood and inhibited the Th1-like phenotype that is characteristic of patients with multiple sclerosis, augmenting the expression of markers associated with increased suppressive function. Overall, our data suggest that Fingolimod performs other important immunomodulatory functions besides altering T cell migratory capacities, with consequences for other autoimmune pathologies characterized by excessive Th1/Th17 responses and Th1-like regulatory T cell effector phenotypes

    Distinct Functions of Autoreactive Memory and Effector CD4\u3csup\u3e+\u3c/sup\u3e T Cells in Experimental Autoimmune Encephalomyelitis

    Get PDF
    The persistence of human autoimmune diseases is thought to be mediated predominantly by memory T cells. We investigated the phenotype and migration of memory versus effector T cells in vivo in experimental autoimmune encephalomyelitis (EAE). We found that memory CD4+ T cells up-regulated the activation marker CD44 as well as CXCR3 and ICOS, proliferated more and produced more interferon-γ and less interleukin-17 compared to effector T cells. Moreover, adoptive transfer of memory T cells into T cell receptor (TCR)αβ-/- recipients induced more severe disease than did effector CD4+ T cells with marked central nervous system inflammation and axonal damage. The uniqueness of disease mediated by memory T cells was confirmed by the differential susceptibility to immunomodulatory therapies in vivo. CD28-B7 T cell costimulatory signal blockade by CTLA4Ig suppressed effector cell-mediated EAE but had minimal effects on disease induced by memory cells. In contrast, ICOS-B7h blockade exacerbated effector T cell-induced EAE but protected from disease induced by memory T cells. However, blockade of the OX40 (CD134) costimulatory pathway ameliorated disease mediated by both memory and effector T cells. Our data extend the understanding of the pathogenicity of autoreactive memory T cells and have important implications for the development of novel therapies for human autoimmune diseases
    • …
    corecore