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ARTICLE

Single-cell multi-omics reveals dyssynchrony of the
innate and adaptive immune system in progressive
COVID-19
Avraham Unterman 1,2✉, Tomokazu S. Sumida 3,4✉, Nima Nouri 5,6,7, Xiting Yan1,8, Amy Y. Zhao1,9,10,

Victor Gasque 11,12, Jonas C. Schupp 1,13, Hiromitsu Asashima3,4, Yunqing Liu8, Carlos Cosme Jr.1,

Wenxuan Deng8, Ming Chen8, Micha Sam Brickman Raredon 1,14,15, Kenneth B. Hoehn 5, Guilin Wang16,

Zuoheng Wang 8, Giuseppe DeIuliis 1, Neal G. Ravindra 11,12, Ningshan Li8,17, Christopher Castaldi18,

Patrick Wong4, John Fournier19, Santos Bermejo1, Lokesh Sharma 1, Arnau Casanovas-Massana 20,

Chantal B. F. Vogels 20, Anne L. Wyllie 20, Nathan D. Grubaugh20, Anthony Melillo5, Hailong Meng5,

Yan Stein 2, Maksym Minasyan1, Subhasis Mohanty21, William E. Ruff 3,4, Inessa Cohen3,4,

Khadir Raddassi3,4, The Yale IMPACT Research Team*, Laura E. Niklason22, Albert I. Ko 20,

Ruth R. Montgomery 10, Shelli F. Farhadian 3,21, Akiko Iwasaki 4,23, Albert C. Shaw21, David van Dijk 11,12,

Hongyu Zhao 8,9,17,24, Steven H. Kleinstein 4,5,24, David A. Hafler 3,4,26, Naftali Kaminski 1,26 &

Charles S. Dela Cruz 1,25,26

Dysregulated immune responses against the SARS-CoV-2 virus are instrumental in severe

COVID-19. However, the immune signatures associated with immunopathology are poorly

understood. Here we use multi-omics single-cell analysis to probe the dynamic immune

responses in hospitalized patients with stable or progressive course of COVID-19, explore

V(D)J repertoires, and assess the cellular effects of tocilizumab. Coordinated profiling of gene

expression and cell lineage protein markers shows that S100Ahi/HLA-DRlo classical mono-

cytes and activated LAG-3hi T cells are hallmarks of progressive disease and highlights the

abnormal MHC-II/LAG-3 interaction on myeloid and T cells, respectively. We also find

skewed T cell receptor repertories in expanded effector CD8+ clones, unmutated IGHG+ B

cell clones, and mutated B cell clones with stable somatic hypermutation frequency over time.

In conclusion, our in-depth immune profiling reveals dyssynchrony of the innate and adaptive

immune interaction in progressive COVID-19.
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SARS-CoV-2, the virus that causes coronavirus disease 2019
(COVID-19), has caused global infection in pandemic
proportions already leading to over five million deaths

worldwide1. Infected patients can range from being asympto-
matic, to having mild-moderate disease, or more severe disease
requiring intensive care unit (ICU)-level care that may include
mechanical ventilation and extracorporeal membrane oxygena-
tion (ECMO)2. Intensive research efforts are actively ongoing to
better understand the pathogenesis and treatment options of this
new disease. COVID-19 associated hospitalization data have
suggested severe disease disproportionately affects older indivi-
duals, those with pre-existing comorbidities, and Black and His-
panic individuals3.

There is accumulating evidence to suggest that dysregulated
inflammation plays a significant role in the mortality and mor-
bidity of the disease4. Patients with severe COVID-19 exhibit
substantial immune changes including lymphopenia and
increased blood levels of inflammatory biomarkers such as
C-Reactive Protein (CRP), IL-1β, TNF-α, IL-8, and IL-64–8. The
magnitude and severity of this inflammatory response have dri-
ven attention to interventions that modulate immune responses
in COVID-19 from corticosteroids to specific cytokine
inhibitors9. The signaling pathways driven by IL-1β, TNF-α, and
IL-6 have been implicated in the pathogenesis of COVID-1910,
and antibodies against IL-6 receptor have shown early promise,
including our own experience9; recent large-scale clinical trials
have highlighted the efficacy of tocilizumab, a humanized anti-IL-
6 receptor monoclonal antibody, in hospitalized COVID-19
patients11. In contrast to early reports emphasizing cytokine
storm as a feature of COVID-19, recent studies with deeper
profiling of immune cells and with larger cohorts suggest not only
a hyper-activated inflammatory response, but also an aberrantly
suppressed immune signature12–16. These seemingly conflicting
results might stem from differences in disease severity and/or
from cross-sectional observations at a single time-point that may
vary across studies. Given that COVID-19 is an acute viral dis-
ease, it is crucial to explore changes in the immune system
response across time.

Here, we employ a single-cell multi-omics approach to study
the dynamics of the innate and adaptive immune system
responses in COVID-19, and explore the molecular mechanisms
that contribute to disease progression. Our results show a
dynamic type-1 interferon response across all cell types that
wanes over time with association to a decrease in viral load and is
more prominent in progressive COVID-19 patients. We highlight
the abnormal MHC-II/LAG-3 interaction on myeloid and T cells,
respectively. TCR and BCR repertoire analysis demonstrate the
altered adaptive immune response in early disease with an
expansion of effector CD8+ T cells and unmutated plasmablasts.
Lastly, we characterize the effects of tocilizumab treatment on
peripheral blood immune cells. Our in-depth immune profiling
reveals dyssynchrony of the innate and adaptive immune inter-
action in progressive COVID-19, which may contribute to
delayed virus clearance.

Results
PBMC subtypes shift across time and disease severity in
COVID-19. In the current study, we sought to gain deeper
insight into the immune response of COVID-19 patients across
disease severities and time course of the disease. To that end, we
adopted a multimodality single-cell approach to study 18 PBMC
samples from 10 patients at various time-points. Age- and sex-
matched healthy subjects (n= 13), whose samples were collected
before the COVID-19 pandemic, were used as controls. Single-
cell RNA-sequencing (scRNA-seq) was performed using a

droplet-based single-cell platform (10x Chromium)17, in order to
construct 5′ gene expression libraries, as well as surface protein
libraries (CITE-seq)18, T cell receptor (TCR) libraries and B cell
receptor (BCR) libraries (Fig. 1a). Following filtration and
cleanup, 153,554 cells were included in the scRNA-seq analysis.
In addition, we obtained clinical and laboratory information on
all patients, including viral loads and cytokine panels.

Our samples were derived from both stable and progressive
COVID-19 patients as part of the Yale COVID-19 IMPACT
(Implementing Medical and Public Health Action Against
Coronavirus CT) Biorepository. Critical patients (n= 4) who
required treatment in the ICU and eventually succumbed to the
disease were defined as having “progressive” disease, while
“stable” disease defined severe patients (n= 6) hospitalized in
internal medicine wards and eventually recovered and discharged.
We analyzed PBMCs from two separate blood samples for each
patient, an early (A) and a late (B) time-point, except for two
progressive patients (TP8, TP9) for whom only a single sample
was available (Fig. 1b–d). Eighty percent of subjects (8/10) were
treated with tocilizumab according to clinical parameters, with
the time-point A and time-point B samples obtained before and
after the initiation of the treatment, respectively. Baseline
characteristics (Supplementary Table 1), including age and sex,
were similar for both control and COVID-19 patients, while
individuals of European ancestry were more prevalent in the
controls. Progressive patients did not differ from the stable group
with regard to baseline characteristics, comorbidities, and time-
lines (Fig. 1d and Supplementary Table 1). The progressive
patients had significantly higher modified-SOFA score, a prog-
nostic severity score, at both time points (Supplementary
Table 1).

SARS-CoV-2 RNA was not detected in any of our PBMC
samples. In addition, we did not detect the expression of ACE2,
the functional host receptor for SARS-CoV-219, which may
diminish the likelihood of PBMC infection.

Applying Louvain clustering to the filtered and integrated
Seurat object, and plotting in uniform manifold approximation
and projection (UMAP) space, 22 cell types were identified and
manually annotated (Fig. 1e and Supplementary Fig. 1) across 30
cell clusters (Supplementary Fig. 2a), with a good overlap between
different samples and subgroups (Supplementary Fig. 2b, c).
Automated annotation using SingleR package20 (Supplementary
Fig. 2d) supported the results of the manual annotation. Good
overlap was also noted between cells processed with and without
CITE-seq (i.e., non-CITE, Supplementary Fig. 2e), except for the
dying monocytes cluster which was reduced in CITE samples,
possibly due to the exclusion of these dying cells during the
additional staining process. Importantly, viability was similar
(approximately 85–90%) for CITE and non-CITE samples before
loading the cells to the 10× Chromium Chip. A detailed
comparison between the CITE and non-CITE samples (Supple-
mentary Fig. 3) showed a high similarity of gene expression, and
data sets were therefore combined for subsequent analysis.

Several differences in the relative abundance of specific cell
types were detected across control, stable, and progressive
samples at the two time points (Fig. 1f). Some notable statistically
significant differences were a relative decrease in naive T cells
(both CD4+ and CD8+) in progressive patients, as well as an
increase in plasmablasts and dividing T & NK cells in COVID-19
patients vs controls. Cells belonging to the interferon (IFN)-
activated CD8 T cell cluster (Fig. 1e and Supplementary Fig. 4), a
small cluster of 191 cells characterized by very high expression of
IFN stimulated genes (ISGs), were found almost exclusively in
COVID-19 patients (p= 0.006), especially at time point A.

Some differences in relative cell proportions were noted for the
innate immune arm as well. The classical monocytes population
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Fig. 1 Study outline and cell clustering results. Eighteen PBMC samples from ten COVID-19 patients were included in this study, as well as 13 control
samples. All COVID-19 patients had PBMC samples analyzed at two time points, except for two progressive patients who were only sampled after
tocilizumab treatment. a Flowchart of the sample preparation methods and single-cell library types used in this study. Each COVID-19 PBMC sample was
split into two after thawing and processed in parallel by two methods: conventional and CITE-seq. Control PBMC samples were only processed with the
conventional sample preparation method, without CITE-seq. b Matrix representation of all 18 COVID-19 samples used, according to disease progression,
tocilizumab treatment, and timing of blood draw. c A guide to patient codes and colors used throughout this manuscript. d A scheme depicting the timing
of symptoms, hospitalization, blood draws, and tocilizumab treatment for each of the 10 COVID-19 patients. e UMAP embedding of single-cell
transcriptomes from 153,554 cells from 18 COVID-19 and 13 control PBMC samples, annotated by cell types. Dashed box shows the two clusters of
classical monocytes, HLADRhi (#7) and S100Ahi/HLADRlo (#1). f Comparison of differential cell counts (as % of all PBMCs) between patient groups for
each of the annotated cell types shown in e. The results are depicted in boxplots, in which the value for each sample is represented by a dot, the upper and
lower bounds represent the 75% and 25% percentiles, respectively. The center bars indicate the medians, and the whiskers denote values up to 1.5
interquartile ranges above the 75% or below the 25% percentiles. The number of patients (n) is indicated for each group in the figure. *p-value < 0.05;
**p-value < 0.01; ***p-value < 0.001, as determined by two-tailed Wilcoxon rank-sum test. DC dendritic cells, IM intermediate, IFN interferon, MAIT
mucosal-associated invariant T cells, NC non-classical, NK natural killer. Source data are provided as a Source Data file.
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sub-clustered into two distinct populations (dashed box in
Fig. 1e): one with low expression of HLA-DR, a major
histocompatibility complex (MHC) class II molecule (cluster
#1), subsequently referred to as S100Ahi/HLA-DRlo monocyte,
and an HLA-DRhi monocyte (cluster #7) as further discussed
below. The proportion of S100Ahi/HLA-DRlo monocyte cluster
was higher in COVID-19 patients compared to controls
(Supplementary Fig. 5a, b), which is consistent with previous
studies15,21. On the other hand, non-classical monocytes (and
their marker FCGR3A) were decreased in COVID-19 (Supple-
mentary Fig. 5), which is also consistent with recent
studies13,16,21. Myeloid dendritic cells (DC) were also decreased
in COVID-19 patients (Fig. 1f).

To conclude, our comprehensive atlas of PBMCs in stable and
progressive COVID-19 patients at different time points, captured
dynamic shifts in the relative abundance of specific cell types,
reflective of the immune system response to the virus.

Type-1 interferon signature dominates peripheral immune
cells in COVID-19. We further analyzed gene expression changes
in each cell type as well as alterations over the time course of the
disease. We observed that type-1 interferon (IFN-I) response was
elevated in COVID-19 across all cell types, especially at time-point A
(Fig. 2a, c), and more so in progressive subjects (Fig. 2d). As
expected, there was a strong correlation between the IFN-I score and
the concurrent viral load at the sample level (R= 0.8; Fig. 2e, f).
Conventional ISGs, such as IFI6, IFI44L, LY6E, and ISG15, were
markedly increased in COVID-19 patients compared to healthy
controls across all major cell types in PBMCs (Fig. 2a). These results
are in agreement with recently published studies22,23, which iden-
tified a strong IFN-I response in various subpopulations of PBMCs
derived from COVID-19 patients. Amphiregulin (AREG), a ligand
for epidermal growth factor receptor (EGFR) not known as a major
ISG in humans, is barely detectable in healthy control PBMCs but is
significantly increased in COVID-19 patients’ monocytes, T cells,
NK cells, and DCs (Supplementary Fig. 6). Although AREG is
known to play important roles in wound repair and resolution of
inflammation24, its expression has also been reported to be increased
in viral infections of the lung25 and induce severe lung pathology in
a mouse model of SARS-CoV infection26. IFN-I signaling plays an
important role in AREG induction within myeloid cells in mice27. A
recent report using bulk RNA-sequencing showed an increase of
AREG in the PBMCs of COVID-19 patients28, supporting a
potential role of AREG in SARS-CoV-2-induced lung pathology.

IFN-I response decreases over time in correlation with virus
clearance. The time course of COVID-19 disease is characterized
by shifts in many genes (Fig. 2a) and ligand–receptor interactions
(Supplementary Fig. 7)29. As expected, the IFN-I score markedly
decreases over time from time-point A (earlier blood draw) to B
(later one) in all patients and all cell types, corresponding to a
decrease in viral loads between those time-points (Fig. 2f).
Notably, the decrease in IFN-I score between time-point A and B
correlates strongly with the time difference between them
(R= 0.97, Fig. 2g). Symptom onset is reported to occur at a
median of 5.2 days after infection7, and since blood draw A was
taken at least 5 days after symptom onset (Fig. 1d), at this time-
point our patients would be expected to be on the descending
slope of the viral load curve30. This is consistent with our
observations of a uniform decrease in viral load and IFN-I score
between the two time points. However, in two out of four pro-
gressive patients (and none of the six stable ones), both IFN-I
score and viral load remained relatively high at time-point B. The
gene expression signature of these two patients at time-point B
(TP7B, TP8B) resembles the signature of other patients at the

earlier time point A, while the other patients at time point B are
closer to the healthy controls’ gene expression signature (Fig. 2a).
This observation is consistent with a recent publication4, sug-
gesting that some progressive patients are slower in clearing the
virus, possibly due to immunosuppressive mechanisms discussed
in the following sections. Altogether, these findings suggest that
in most patients, the initially elevated IFN-I response decreases
over time together with the decrease in viral loads. Interestingly,
in some progressive patients, the IFN-I response seems to persist,
concordantly with decreased viral clearance.

Marked gene expression changes differentiate progressive from
stable patients. We observed marked gene expression differences
between stable and progressive patients that span across all cell
lineages (Fig. 3a–c and Supplementary Data 1–4). The expression
of ISGs is increased in all cell types in progressive subjects
(Fig. 3a, d). Interestingly, there is an increased expression of the
suppressive cytokine IL10 in myeloid cells and several additional
cell types in progressive patients (Supplementary Fig. 8a). Levels
of IL-10 in plasma are known to be increased in severe COVID-
19, as reported in our recent study4 as well as by others7,31. IFN-I
has been reported to induce IL-10 expression, thus limiting
immune-related tissue damage in certain conditions32,33. Similar
to ISGs, the level of plasma IL-10 decreases from time-point A to
B (Supplementary Fig. 8b), although in a larger cohort of patients
this decrease was only seen in stable non-ICU patients and the IL-
10 level was kept higher in ICU patients (Supplementary Fig. 8d).
We observed a modest positive correlation (R= 0.50, Supple-
mentary Fig. 8c) between the IFN-I score in PBMCs and plasma
IL-10 levels, which may support an association between the
strength of the IFN-I response and the suppressive IL-10 response
observed in COVID-19 patients.

In addition, we observed a decrease in MHC-II transcripts in
antigen-presenting cells (APCs) of progressive subjects compared
to stable ones, with the latter being more similar to that of control
subjects (Fig. 3c, e and Supplementary Fig. 9). Increased IL-10 is
known to downregulate the expression of MHC-II34,35, possibly
explaining this observed decrease in progressive subjects.

Together, this suppressive signature of increased IL-10 and
decreased MHC-II in progressive patients might serve as a
double-edged sword: on the one hand, decreasing inflammation
and protecting tissues from immune-related damage, and on the
other hand hampering the ability to mount an effective antiviral
response, as will be further discussed in the next section.

Progressive patients exhibit S100Ahi/HLA-DRlo myeloid phe-
notype. In order to better understand the transcriptional differ-
ences between stable and progressive COVID-19 monocytes, we
sub-clustered them after excluding cells from control subjects.
This yielded 23,701 monocytes in seven clusters (Fig. 4a and
Supplementary Fig. 10). We identified a clear separation between
cells of stable and progressive patients, which is driven in part by
increased expression of ISGs in progressive patients (Figs. 3a, 4a
and Supplementary Data 1). Regulatory and tissue repair-
associated genes are increased in progressive vs stable mono-
cytes, including CD163 (Fig. 4b), IL1R2 (Fig. 4c), AREG (Fig. 4d),
the co-inhibitory receptor HAVCR2 (encoding TIM-3), and its
ligand LGALS9 (encoding Galectin-9; Fig. 3b), and IL10 (Sup-
plementary Fig. 8). The expression of RNASE2, encoding a pro-
tein with antiviral activity (mainly against single-stranded RNA
viruses)36, is also increased in progressive patients (Fig. 3a). Of
note, LGALS9 expression was increased not only in myeloid cells
but also in B and CD4 T cells in progressive patients (Fig. 3b and
Supplementary Fig. 9). This indicates a potential role for the
TIM-3/Gal-9 pathway in myeloid/T cells interaction that

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27716-4

4 NATURE COMMUNICATIONS |          (2022) 13:440 | https://doi.org/10.1038/s41467-021-27716-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


enhances the regulatory phenotype of myeloid cells in progressive
patients, as observed in cancer patients37,38.

MHC-II molecules were decreased in progressive monocytes as
detailed above (Figs. 3a, c, e and 4d). The alarmins S100A8/
S100A9 are ranked among the top DEGs increased in progressive
vs stable monocytes (Figs. 3a and 4d), as also shown by recent
scRNA-seq COVID-19 studies39,40, and as observed in SARS-

CoV infection41. Of note, S100A8/9 expression is also influenced
by tocilizumab treatment as discussed in the tocilizumab effects
section below. Given that S100A9 is a marker of myeloid-derived
suppressive cells (MDSCs)42 and can promote IL-10 production
and suppressive capacity of MDSCs43,44, the signature of
monocytes in progressive patients somewhat resembles that of
MDSCs45. Indeed, one of the two classical monocyte clusters
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(cluster #1, Fig. 1f—dashed box) is enriched with MDSCs
associated genes (S100A8, S100A9, IL1R2, IL10) with low
expression of MHC-II. Furthermore, this monocyte cluster
exhibits highly overlapped transcriptional features with a recently
identified monocyte population in severe sepsis46. Unexpectedly,
pro-inflammatory monocyte markers such as IL1B and TNF are
downregulated in COVID-19 monocytes relative to controls
(Supplementary Fig. 11), both in progressive and in stable
patients, although IL1B was slightly less downregulated in stable
patients. This observation is consistent with recent reports
highlighting an immunosuppressive phenotype in severe respira-
tory failure in COVID-19 patients47.

Taken together, these findings revealed a skewed regulatory
signature of monocytes in progressive patients, which resembles
immunoparalysis48. Given that many of these genes associated
with an immunosuppressive phenotype are regulated downstream
of IFN-I signaling (AREG, IL1R2, S100A8, S100A9, IL10), this
shift of classical monocytes toward MDSC-like suppressive cells
might stem from the strong IFN-I response. In addition, our
connectome analysis highlights the enhanced TIM-3/Gal-9
circuit, which may contribute to the aberrant regulatory myeloid
signature. This potentially premature shift to a resolution phase
might interrupt appropriate antiviral immune responses, con-
tributing to the delayed virus clearance and deleterious clinical
manifestations observed in severe COVID-194.

CD8+ T cells exhibit an enhanced effector signature in pro-
gressive patients. We next attempted to examine the gene
expression differences in CD8+ T-cell subpopulation between the
disease conditions. A detailed analysis of sub-clustered 19,458
CD8 T cells (Fig. 4e and Supplementary Fig. 12a) showed a clear
separation between stable and progressive patients, driven mainly
by a higher expression of ISGs in the progressive patients (Figs. 3a
and 4e), but also by higher expression of effector cytokines such
as GZMB (Fig. 3a). Most of the cells from the IFN-activated
CD8+ T cell cluster are located in the progressive pole and
overlap with the effector T cell cluster (Fig. 4e). There are clear
shifts in the gene expression profile from the early time-point A
to the late time-point B (Supplementary Fig. 12b–d) that are
mainly driven by the decrease in ISG signature (Fig. 2a). The
differential connectivity map analysis demonstrates an increased
expression of the co-inhibitory receptor LAG3 in T lymphocytes
of progressive patients, while its ligands, which are MHC-II
molecules, are decreased in antigen-presenting cells (Fig. 3b, c).
This mismatch, which was validated by flow cytometry (Fig. 4f), is
part of the immune system dyssynchrony we observed in pro-
gressive patients that required ICU admission.

Tocilizumab effects differ across cell types and associate with
levels of IL6R and IL6ST. Eight of ten COVID-19 patients in our
study were treated with tocilizumab, an anti-IL-6 receptor (IL-6R)
antibody. We further examined the differential gene expression
pattern that is associated with tocilizumab treatment. IL6R is
highly expressed in monocytes, dendritic cells, neutrophils, CD4+

T cells (including FoxP3 regulatory T cells (Tregs)) and naive
CD8+ T cells (Fig. 5a). On the other hand, IL6R expression is low
in the other types of lymphocytes including memory CD8+,
effector CD4+ & CD8+ T cells, gamma-delta T cells, B cells and
NK cells. IL6ST (encoding gp130), responsible for signal trans-
duction of IL-6 following binding to IL-6R, is expressed in all
types of PBMCs (Fig. 5b). To identify the transcriptional effects of
tocilizumab treatment in COVID-19 patients, we compared gene
expression changes from time point A to B for patients in the
tocilizumab treatment group versus those not treated with toci-
lizumab (Fig. 5c and Supplementary Fig. 13). We highlight six
tocilizumab responsive genes (ARID5A, BCL3, PIM1, SOCS3,
BATF, MYC) that are associated with IL-6 pathway and known to
be perturbed by tocilizumab treatment in rheumatoid arthritis
patients49. Of note, those transcriptional changes by tocilizumab
are observed mainly in the cell types that highly express both IL6R
and IL6ST, such as naive CD4+ T cells, memory CD4+ T cells,
naive CD8+ T cells, and Tregs. To quantify this effect, we gen-
erated an IL-6 score (a composite score of the aforementioned six
tocilizumab responsive genes). We demonstrated a significant
decrease of IL-6 score in CD4+ T cells in all patients who received
tocilizumab, but not in ones who did not (Fig. 5d and Supple-
mentary Data 10).

Next, we sought to identify the other genes that are perturbed
by tocilizumab in COVID-19 patients. To minimize the
confounding effects of disease-related gene expression changes
over time, we focused on genes that are not decreased over time
in the non-tocilizumab group but significantly decreased follow-
ing tocilizumab treatment (log-fold-change [logFC] > 0.4, Fig. 5e).
We demonstrate that S100A8 and S100A9 expression are highly
downregulated by tocilizumab treatment across the majority of
the cell types, but not changed or even slightly increased in non-
tocilizumab group, leading to a large logFC difference (Fig. 5e).
Given that a positive feedforward loop between S100A8/9 and IL-6
can drive pro-inflammatory circuit50–52 and that elevated serum
S100A8/9 is one of the hallmarks of severe COVID-19 patients53,54,
it is possible that tocilizumab can exert its effect partly through
the inhibition of S100A8/9 expression in COVID-19. Of interest,
the expression of IL6R is higher than that of IL6ST in myeloid
cells, while it is lower in all other cell types, leading to a difference
in IL6R/IL6ST ratio. According to a recent study55, this
ratio determines the type of response to IL-6 signaling:

Fig. 2 Strong interferon response is observed in COVID-19 samples. a Heatmap showing the top differentially expressed genes (logFC > 0.5, adjusted
p-value < 0.05 calculated by Wilcoxon rank-sum test with Bonferroni correction for multiple comparisons) for each major cell type, comparing time-point
A and B. The level of expression of these genes in control samples is shown as well. The upper part of the heatmap depicts genes that are increased at
time-point A compared to B (marked “time-point A up”). b–g IFN-I scores were calculated based on the expression of 12 ISGs for each sample. b IFN-I
score is markedly increased in all cell types in COVID-19 at time point A, relative to controls. c IFN-I score decreases from time-point A to B in nearly all cell
types. d IFN-I score is higher in progressive vs stable COVID-19 patients, and at time-point, A (earlier blood draw) compared to time-point B (later one).
****p-value < 1E−300 calculated by Wilcoxon rank-sum test. e, f Viral load for each patient was calculated based on RT-qPCR analysis of nasopharyngeal
swabs or saliva samples. e Shown is a scatter plot of scaled log viral load vs scaled IFN-I score for all COVID-19 samples. Correlation coefficient (R) and
p-value are indicated. Error bands denote a 95% confidence interval. p-value was calculated based on an F-test for the significance of the regression model.
f Shown is a violin plot depicting the IFN-I score for each sample, with the corresponding viral loads indicated below the plot. Arrows mark the time
difference (in days) between paired samples (i.e., from the same patient) at two time-points: A (early/before tocilizumab treatment) and B (late/after
tocilizumab). g Scatter plot for the 8 paired samples, showing a very high correlation between the time difference from sample A to B and the respective
change in scaled IFN-I score during that time. Correlation coefficient (R) and p-value are indicated. Error bands denote a 95% confidence interval. p-value
was calculated based on an F-test for the significance of the regression model. IFN interferon, ND not detectable. FC fold-change. Source data are provided
as a Source Data file.
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anti-inflammatory classical signaling in cells with high IL6R/
IL6ST (as observed in our myeloid cells) or pro-inflammatory
trans-signaling in cells with low IL6R/IL6ST (non-myeloid cells),
possibly explaining the observed difference between cell types in
response to tocilizumab (Fig. 5e). While we detected a response to

tocilizumab at a cellular level, our study was neither designed nor
powered to detect any clinical effect of the therapy. Nonetheless,
these gene expression patterns may suggest a link between
tocilizumab effects, IL6R, IL6ST, and S100A8/9 in COVID-19
patients.
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Fig. 3 Severe COVID-19 is associated with marked changes in gene expression and connectome. a Heatmap showing the top differentially expressed
genes (logFC > 0.5, adjusted p-values < 0.05 calculated by Wilcoxon rank-sum test with Bonferroni correction for multiple comparisons) for each major
cell type, comparing progressive to stable patients. The upper part of the heatmap depicts genes that are increased in progressive compared to stable
patients (marked “progressive up”). Hierarchical clustering separates most of the progressive samples from the stable ones based on gene expression
similarities (except for some stable samples at time point A, which cluster with the progressive ones). b, c Differential connectivity maps (connectomes) of
ligands (bottom half) and receptors (upper half). For each cell type, log-fold changes of ligands and receptors were calculated, comparing progressive to
stable COVID-19 patients; we only plotted edges with >10% of cells expressing the ligand and receptor, and with an adjusted p-value < 0.05 for the
comparison; edge size is proportional to the degree of change between progressive and stable patients. b Connectome of ligands and receptors that are
both increased in progressive vs stable patients. c Connectome of ligands that are decreased and receptors that are increased in progressive vs stable
patients. d A violin plot depicting differences in IFN-I score between progressive and stable COVID-19 patients in all PBMC subpopulations. e A composite
score of nine HLA type 2 genes that are highly expressed in all subjects (HLA2 score) is decreased in monocytes of progressive patients relative to stable
ones and controls. The right panel depicts the HLA2 scores of individual patient samples. ****p-value < 1E−300 calculated by Wilcoxon rank-sum test.
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Surface protein-based immune-phenotyping of peripheral
blood cells in COVID-19. We next constructed an independent
immunophenotypic map of PBMCs using CITE-seq18. To better
identify cellular multiplets and enable us to super-load the cells
onto the 10× platform, we used Cell Hashing technique and
multiplexed 5-6 samples in each 10× reaction. We adopted 189
oligonucleotide-labeled antibodies (Total seq C antibody panel
from BioLegend) (Supplementary Data 5). Multiplets and cells
with unidentifiable sample origin were removed from the
downstream analysis and 83.2% of the cells were analyzed
(n= 43,349; Supplementary Data 6). Following unsupervised

clustering, annotation for CITE-seq cells was performed with
both gene expression and antibody-derived counts (ADT) by
using a manually curated marker gene list (Supplementary
Data 7). We observed a cluster of undefined cells (n= 8032) that
are positive for multiple linage markers of ADT signals and/or
display elevated signals unlikely to be explained by immunolo-
gical evidence. Those cells were removed from the analysis, and
all other cells were plotted on UMAP space (Supplementary
Fig. 14a). In order to investigate the coherence of both annota-
tions, we calculated the percentage of shared cells between RNA
and ADT-annotated cell types (Supplementary Fig. 14b).
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HLA-DR+CD38+ T cells express higher co-inhibitory recep-
tors in progressive patients. Among the overlapping cell types, we
found that 49% of ADT-annotated activated effector T cells cluster
(HLA-DR+CD38+, ADT cluster #15) are overlapped with GEX
dividing T/NK cluster, indicating expression of both HLADRA/CD38
and MKI67 marks a unique T cell subset in COVID-19 (Fig. 6a and
Supplementary Fig. 14b). Dual expression of HLA-DR and CD38 or
a higher expression of Ki67 are known to mark a highly activated T
cell population in acute viral infection56–59. We observed that
MKI67-expressing TCR+ T cells within the GEX dividing T/NK
cluster were increased in COVID-19 patients, which was further
validated by using flow cytometry with the same samples (Fig. 6b, c)
and a different cohort, specifically in CD4+ T cells from progressive
patients (Supplementary Fig. 14c, d). This observation is supported
by a recent study using flow cytometry with a larger number of
COVID-19 patients60.

CITE-seq technology further allowed us to elucidate the
transcriptional signature of this activated T cell population.
Compared to the other T cell clusters, the HLA-DR+CD38+ T
cell cluster #15 exhibits enriched expression of co-inhibitory
receptors (LAG3, CTLA4, PDCD1, ENTPD1, HAVCR2)61,62 and
lower expression of naive/stemness markers (TCF7, LEF1)63–65

and cytotoxic T cell markers (NKG7, KLRG1, PRF1, GZMH)
(Supplementary Fig. 14e). Transcription factors (TFs) promoting
T cell exhaustion (PRDM1, MAF)66 are also enriched in this
cluster. These data suggest that T cells in this cluster display
skewed transcriptional signature toward terminal differentiation.

We next determined whether there are transcriptional differences
in this activated T cell cluster between stable and progressive
COVID-19 patients. Progressive patients exhibited higher expression
of IFN-I response genes (MX1, IRF7, ISG20) and cytotoxic/pro-
inflammatory cytokines (PRF1, GZMH, IFNG), and lower expression
of stemness/progenitor markers (TCF7, LEF1). Interestingly, while
most of the co-inhibitory receptors were enriched in progressive
patients (LAG3, CTLA4, HAVCR2), some were enriched in stable
patients (PDCD1, TIGIT). Exhaustion/effector driving TFs (PRDM1,
MAF) and the immunoregulatory cytokine IL10, which is also co-
expressed in exhausted T cells, were upregulated in progressive
patients (Fig. 6d). We found that LAG-3 was the most upregulated
co-inhibitory receptor in T cells specifically in activated T cells from
progressive COVID-19 patients, which is validated by flow cytometry
with a different cohort of COVID-19 patients4 (Figs. 4f and 6e).
Given that the higher expression of co-inhibitory receptors mark
exhausted T cells and recent studies demonstrated exhaustion-like
gene expression patterns observed in T cells in COVID-1923,67, we
sought to determine the gene expression signature of these dividing
T cells in progressive patients by using gene set enrichment analysis
(GSEA). Dividing T cells in progressive patients exhibited more

terminally exhausted T cell signature and IFN-I response signature
than those in stable patients (Fig. 6f, Supplementary Fig. 14f, and
Supplementary Data 8). Of note, this transcriptional signature in
progressive COVID-19 patients overlapped with that of HIV-specific
T cells from HIV progressors compared to HIV controllers
(Supplementary Fig. 14f). Although it is too early to observe T cell
exhaustion at this acute phase of viral infection, given that the IFN-I
pathway is implicated to facilitate the T cells exhaustion in both
tumor infiltrated T cells63 and chronic viral infections68,69, our data
suggest that the stronger or prolonged IFN-I response in progressive
COVID-19 patients may promote T cell differentiation prematurely.

In light of these observations, we further sought to understand
the alteration of immune cell interaction between stable and
progressive patients. Among the ligands of LAG-3, we observed
significant decreases of MHC-II molecules on myeloid cells and B
cells in progressive COVID-19 patients, which is also highlighted
in our differential connectome analysis in progressive versus
stable COVID-19 patients (Fig. 3c). Flow cytometry analysis
demonstrated the negative correlation between LAG-3 on CD4+

T cells and HLA-DR on CD14+ classical monocytes (Fig. 6g),
suggesting that altered LAG-3/MHC-II interaction might play a
role in disease progression.

Taken together, our scRNA-seq analysis and flow cytometry-based
validation revealed the increase of an activated T cell population
marked by higher expression of LAG-3 in COVID-19 patients.
Furthermore, transcriptional analysis of this population demon-
strated a terminally differentiated T cell-like signature in progressive
COVID-19 patients with higher co-inhibitory receptor expressions.
Unbalanced LAG-3/MHC-II interactions between T cells and
antigen-presenting cells may reflect the failure of appropriate
innate-adaptive cells interaction, resulting in aberrant expression of
cytotoxic cytokines that may, in turn, contribute to
immunopathology4.

Skewed T cell receptor repertoire in CD8+ T cells of pro-
gressive patient. In order to characterize the T cell receptor (TCR)
repertoire relevant for immunity to SARS-CoV-2, we conducted a
single-cell V(D)J analysis of COVID-19 and control samples. TCR
data was captured for 67,393 cells in total with a median of 1954 cells
per sample. Quality assessment and control of the data filtered out
8303 cells, leaving a median of 1778 cells per sample. Based on these
high-quality data, cells with the same V(D)J sequences of beta and
alpha chains from the same subject were grouped into clones. In
total, 41,742 unique clones were identified with a median of 1297
clones per sample (Fig. 7a). The cell-type composition of these cells
for each sample is shown in Fig. 7b.

Alpha diversity with rarefaction was calculated using the
Alakazam R package70 for both memory and naive CD4+ T cells

Fig. 4 Progressive COVID-19 is associated with an immune dyssynchrony in monocytes and T-cells. a Four congruent UMAPs showing sub-clustering
results of all monocytes. The left panel shows the original cell annotation. Cells from progressive patients concentrate in the high ISG pole (IFI6 is given as
a representative example of ISGs). The right panel highlights a clear separation between cells from the earlier blood draw (time point A) and those from
the later one (time point B) which follows the ISG expression pattern. b, c CD163 and IL1R2 are increased in progressive COVID-19. ***p-value < 1E−200;
****p-value < 1E−300 calculated by Wilcoxon rank-sum test with Bonferroni correction for multiple comparisons. d Violin plots showing the expression of
HLA-DRA, S100A8, AREG, and IL1R2 in myeloid cell clusters, comparing stable to progressive patients. e Four congruent UMAPs depicting sub-clustering
results of CD8+ T cells. The left panel shows the original cell annotation. Cells from progressive patients show a clear separation from those of stable ones,
and seem to concentrate at the high ISG pole (IFIT3 is given as a representative example for ISGs). Most of the cells belonging to the IFN-activated CD8+ T
cluster are located in the high IFN/progressive pole (right panel). f LAG-3 and HLA-DR levels were measured in the indicated cell types by flow cytometry,
in an independent cohort of patients. Shown are % positive for these markers out of total cells of the same cell type, comparing patients that were admitted
to the intensive care unit (ICU, comparable to progressive patients, n = 8 for LAG-3 analysis and n = 9 for HLA-DR analysis) and those that were not (non-
ICU, comparable to stable patients, n = 22). The results are depicted in boxplots, in which the value for each patient is represented by a dot, the upper and
lower bounds represent the 75% and 25% percentiles, respectively, the center bars indicate the medians, and the whiskers denote values up to 1.5
interquartile ranges above the 75% or below the 25% percentiles. *p-value < 0.05; **p-value < 0.01, as assessed by two-tailed Mann–Whitney test. Source
data are provided as a Source Data file.
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and memory and naive CD8+ T cells. The diversity of memory
and naive CD8+ T cells at both time points showed lower
richness (Student’s t-test p-value= 0.045) and evenness (i.e.,
Shannon index/richness, Student’s t-test p-value= 0.005) in
progressive patients than stable patients (Fig. 7c), which is
consistent with the higher expansion of CD8+ T cell clones in
progressive patients (Fig. 7d)16,40,71. This difference in alpha

diversity was not observed in memory and naive CD4 T cells. The
change in CD4+ and CD8+ T cell clonal richness and evenness
between time-point A and B were not significantly different
between progressive and stable patients, possibly due to the small
number of progressive patients with data at both time points.
(Fig. 7c, bottom panel).
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Identification of COVID-19-specific CDR3 regions. In order to
identify characteristics of the TCR regions that may confer spe-
cificity to SARS-CoV-2, we used GLIPH272 to assess the simi-
larity of complementarity-determining region 3 (CDR3)
sequences among COVID-19 patients. We specifically looked for
CDR3 motifs in β chains that were shared across several COVID-
19 patients but in none of the 13 control subjects. Stringent filters
were applied to the GLIPH2 CDR3 specificity groups (or clusters)
to improve accuracy, including requiring Fisher’s score < 0.0001,
≥3 unique TCRs in the specificity group, and significant V-gene
bias (p < 0.05). The filtered specificity groups with any clone from
control samples were filtered out to enhance the likelihood of
specificity to SARS-CoV-2 instead of to other common viruses
such as cytomegalovirus. After heavy filtering, 24 and 172 groups
remained for CD8+ and CD4+ T cells, respectively. Most of the
identified specificity groups included clones from different sam-
ples, suggesting a large similarity in the CDR3 sequence in the
potential SARS-CoV-2-specific clones (Fig. 7e and Supplementary
Fig. 15). To further enhance the specificity to clonally-expanded
SARS-CoV-2 responsive T cells, we focused on 10 CD8+ and 12
CD4+ T cell groups that have clones from ≥3 subjects with at
least one of these clones with ≥2 cells. The V and J gene usage
analysis showed a strong usage bias for J gene in 3 CD8+ groups
and 1 CD4+ group (Fig. 7f, g). Some VJ combinations showed a
dominant usage such as TRAV5/TRAJ12/TRBJ2-7/TRBV5-6 for
cluster 1 in CD8+ T cells (Fig. 7f and Supplementary Figs. 16, 17).
For the CD4+ T groups, there is no obvious V gene usage bias
and the J gene usage is dominated by TRBJ2-5 (Fig. 7f, g).

Among the 10 and 12 putative SARS-CoV-2-specific and
expanded groups, we further chose those that include clones from
≥3 different COVID-19 patients with ≥55% clones having more
than one cell, resulting in five and two groups for CD8+ and
CD4+ T cells, respectively. The chosen clusters were also the top
five and two clone clusters with the best composition score by
GLIPH2, which measures the strength of a specificity group based
on global/local similarities, enrichment of common V-genes, a
limited CDR3 length distribution, expanded clones (ECs), and
cluster size. This suggests that the chosen specificity groups are
likely from SARS-CoV-2-specific ECs and shared across COVID-
19 patients with a highly conserved CDR3 amino acid (AA)
sequence. All specificity groups are identified based on global
similarities in the CDR3 region, except for cluster IV in CD8+

T cells, whose member clones have different CDR3 lengths but
share the motif “QDIG”. The CDR3 sequence motifs of the
specificity groups with global similarity are shown in Fig. 7f, g.
We confirmed that our samples were not biased by HLA genotype
(Supplementary Figs. 18 and 19). The CDR3 motifs in Fig. 7f, g
were compared to those found in two recent SARS-CoV-2 studies
with TCR repertoire data73,74, which collected samples mainly
from recovered and convalescent SARS-CoV-2 patients. The
comparison showed that our CD8+ specificity group V motif
(TNTGE) had a similar pattern to a motif (TGTGE) found in
Schultheiß et al. 74. The study did not find this motif among the

top 31 motifs shared among recovered SARS-CoV-2 patients but
found it shared between longitudinal samples during active
disease and at recovery from one patient with mild disease and
recovered patients, suggesting the specificity of this motif to
SARS-CoV-2. This overlap validates the specificity of our CD8
group V motif to SARS-CoV-2 infection. It also demonstrates the
power and importance of our TCR analysis due to sample
collection during active disease and GLIPH2 analysis with the
exclusion of specificity groups present in control samples.

Single-cell V(D)J B cell receptor repertoire analysis. For each
sample, a summary of the number of cells, frequency of each B cell
type (naive B, memory B, and plasma cells), and frequency of each
isotype (IGHM/D/G/A) is provided in Fig. 8a–c, respectively. Overall,
the single-cell V(D)J library contains 7177 cells distributed across
18 samples. Gene usage and mutation frequency dynamics across
three cell types, per each patient and time point, are shown in
Supplementary Figs. 20 and 21, respectively.

COVID-19 patients with stable status show higher mutation
frequency and longer CDR-H3 length. IGHV/IGHJ mutation
frequency and CDR-H3 length varied by antibody isotype and
cell type within COVID-19 patients (Fig. 8d–f). IGHM memory
and plasma B cells had mutation frequencies significantly
lower than 5% (mutations/nucleotide, p-value < 0.01), regardless
of treatment or disease progression group. As expected, IGHG
memory B cells and plasma cells had mutation frequencies higher
than IGHM cells. In particular, plasma cells in stable COVID-19
patients without treatment had mutation frequencies significantly
higher than 5% (mean= 5.6 ± 3%; p-value < 0.01). Memory cells
in stable patients under tocilizumab treatment had even higher
mutation frequencies (mean= 7.5 ± 4.6%).

The CDR-H3 length of IGHG and IGHM B cells generally varied
between 10 and 20 AAs (we used 15 AAs as a reference point for
downstream comparisons) across all cell types (Fig. 8d–f). However,
the CDR-H3 length of IGHG plasma cells in stable COVID-19
patients was significantly larger than 15 AAs (p-value < 0.01), while
the CDR-H3 length of IGHG memory cells do not show significant
differences from 15 AAs (mean= 15.2 ± 3.9 AAs across all
samples). On average, CDR-H3 lengths of IGHG plasma cells were
larger in stable no-tocilizumab patients (mean= 18.4 ± 5.4 AAs)
than in stable tocilizumab-treated patients (mean= 17.2 ± 5 AAs).

Stable patients under treatment do not show change in CDR-
H3 amino acid usage. We sought to investigate the differences in
CDR-H3 AA usage between the two blood draw time points (A
and B) (Fig. 8g). We tackled this query by calculating the con-
ditional information content (IC) of each AA in the CDR-H3
segment at time point B with respect to time point A (see
“Methods” section). We averaged the conditional ICs for patients
belonging to three different groups: (1) stable patients under no
treatment (no-tocilizumab-stable); (2) progressive patients under

Fig. 5 Tocilizumab exerts differential gene expression effects in different immune cells. a, b UMAP representations of IL6R (a) and IL6ST (b) expression
in PBMCs. Note that IL6R is highest for monocytes, dendritic cells, CD4+ T cells (including Tregs), and naive CD8+ T cells, while IL6ST expression is similar
in the majority of cell types. c Scatter plots of the logFC from time-point A to B in patients treated (Y axes) compared to those not treated with tocilizumab
(X axes) for several T cell subtypes. This comparative model demonstrates a marked effect of tocilizumab on IL-6 pathway genes (shown in red) in CD4+

and naive CD8+ T cells, but not in effector CD8+ T cells, in which IL6R expression is low (see Supplementary Fig. 13 for the full panel with all cell types).
d IL-6 score in CD4+ T cells is decreased at time-point B in all the patients that were treated with tocilizumab, but not in the non-treated patients (NS0,
NS1). e A heatmap showing the expression of genes that were significantly differentially expressed (LogFC > 0.4, adjusted p-value < 0.05 calculated by
Wilcoxon rank-sum test with Bonferroni correction for multiple comparisons) between time point A and B in tocilizumab-treated patients, but not in
patients that were not treated by tocilizumab, across PBMC subtypes. All the entries in the heatmap matrix are the differences of logFC in tocilizumab and
in non-tocilizumab groups. Also shown is a hierarchical clustering according to cell types (horizontal) and individual genes (vertical).
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tocilizumab treatment (tocilizumab-progressive); and (3) stable
patients under tocilizumab treatment (tocilizumab-stable). Our
results indicate that the profile of AA usage for tocilizumab-stable
patients is quite different from the other groups. In fact, the IGH
repertoires of tocilizumab-stable patients do not show any change
in preferences toward the usage of specific AAs in their CDR-H3
segment between the time points. In contrast, the IC profiles of
tocilizumab-progressive and no-tocilizumab-stable patients vary
across AAs. In particular, tocilizumab-progressive and no-

tocilizumab-stable patients show evidence of increased usage of
alanine (A), aspartic acid (D), and tyrosine (Y), and decreased
usage of proline (P), glutamine (Q), and threonine (T) at time-
point B relative to A.

High frequency of plasma cells with expanded clonal lineages
in COVID-19. To explore antigen-driven B cell responses in the
COVID-19 patients, we investigate expanded clonal lineages
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(Fig. 8h, i). We identified 20 expanded clones (ECs, as defined in
Methods section) with members found in 15/18 samples con-
taining 1157/7177 cells (16% of all B cells). Plasma cells were
significantly enriched in the ECs (mean= 78% across all samples;
mean odds ratio = 5.7; p-value < 0.01) (Fig. 8h). ECs in samples
TP7A and TP7B did not contain any plasma cells. IGHG cells
were significantly enriched in ECs from tocilizumab-stable
patients (mean= 84% across 6 samples, mean odds ratio= 8.2;
p-value < 0.01) IGHM cells were enriched in ECs from

tocilizumab-progressive patients (mean= 58% across 5 samples,
mean odds ratio = 1.2) (Fig. 8i).

We further investigated the mutation frequency and CDR-H3
length of cells within ECs (Fig. 8d–f). We observed that the mutation
frequency of IGHG plasma cells from stable patients was higher on
average (mean= 5.5 ± 4%) than that in progressive patients (mean=
3.2 ± 0%), regardless of treatment status. The CDR-H3 length of
IGHG plasma cells from stable patients was significantly larger than
15 AAs (p-value < 0.01). In particular, patients without treatment had
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Fig. 7 TCR data analysis of COVID-19 patients and controls. a The number of cells and clones across all samples. Cells with TCR data of low quality are
excluded. b Fractional abundance of cells with high-quality TCR data among different cell types. c Rarefied diversity indices (richness and evenness) of the
naive and memory CD8+ T cells at time point A are significantly different between stable (n = 5) and progressive (n = 2) patients presented in boxplots
(top panels). p-value = 0.045 for richness and 0.005 for evenness by one-sided Student’s t-test. The results are depicted in boxplots, in which the value
for each patient is represented by a dot, the upper and lower bounds represent the 75% and 25% percentiles, respectively. The center bars indicate the
medians, and the whiskers denote values up to 1.5 interquartile ranges above the 75% or below the 25% percentiles. Changes in these diversity indices
after treatment are shown between stable (n = 5) and progressive (n = 2) patients (bottom panels). p-value = 0.283 for richness and 0.240 for evenness
by Student’s t-test. d Rarefied relative abundance of the top 30 clones from CD4+ T cells (top panels) and CD8+ T cells (bottom panels) between stable
and progressive patients. e The number of clone clusters identified by GLIPH2 in CD4+ T cells (lower triangle) and CD8+ T cells (upper triangle) that have
clones from every pair of samples based on the top 24 CD8+ and 172 CD4+ T cell SARS-CoV-2-specific clone clusters. f Clone clusters’ TRBV and TRBJ
gene usage distribution in CD8+ T cells based on the 4 chosen SARS-CoV-2-specific expanded clone clusters. The CDR3β motif found in each cluster with
global similarity is shown as well as the samples that contribute clones to the cluster. * Clusters with dividing CD8+ T cells. † Clusters with IFN-activated
CD8+ T cells. g Clone clusters’ TRBV and TRBJ gene usage distribution in CD4+ T cells based on the 2 chosen SARS-CoV-2-specific expanded clone
clusters. The CDR3β motif found in each cluster is shown as well as samples that contribute clones to them. Source data are provided as a Source Data file.

Fig. 8 BCR data analysis, part 1. a Number of cells (closed-bars) and number of clones (open-bars) in patients colored based on the treatment and status
of the disease. b Fractional abundance of memory B cells, naive B cells, and plasma cells in each sample. c Fractional abundance of isotypes (IGHM/D/G/
A) in each sample. d–f CDR3 amino acid length (x axis) and mutation frequency (y axis) for each cell type (memory B cell and plasma cell columns) and
isotype (IGHG and IGHM rows) of stable patients with no treatment, progressive patients under treatment, and stable patients under treatment. Colors
indicate different samples. Vertical dashed line represents 15 amino acid CDR3 length reference point and horizontal line represents 5% mutation
frequency reference point. Points with larger size belong to the expanded clones. g CDR3 amino acid usage at time-point B relative to A for patients
grouped based on the treatment and status of the disease. h Cell type fractional abundance of expanded clones in each sample. Labels in each bar
represent the number of expanded clones (top) and number of cells (bottom). i Isotype fractional abundance of expanded clones in each sample. Labels as
described in h. Source data are provided as a Source Data file.
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a larger mean CDR-H3 length (mean= 20.2 ± 6.6 AAs) than those
under treatment (mean= 17.5 ± 5.4 AAs). IGHG plasma cells from
progressive patients had CDR-H3 lengths significantly shorter than
15 AAs (mean= 14.5 ± 8.2 acid AAs; p-value < 0.01).

Selection of particular IGHV genes in response to a particular
antigen has been observed in other antiviral responses, such as the
preference for IGHV1-69 in response to some influenza virus
antigens75,76. Therefore, we sought to identify IGHV genes under
selection in COVID-19 patients (Fig. 9a). IGHV4-34 gene was highly
used in ECs of stable patients with odds ratio of ~10 among patients
under treatment and ~9.5 among patients without treatment.
Progressive patients showed a lower usage of IGHV4-34 with an
odds ratio of ~5.9. We further performed principal component
analysis (PCA) of IGHV gene usages in expanded B cell clones
(Fig. 9b). We have identified a cluster of patients under treatment,
including both stable and progressive, whose corresponding ECs only
contain IGHV1-46 (100% in TS4B), IGHV3-21 (100% in TS2B),
IGHV3-30-3 (85% in TS3A), and IGHV3-72 (100% in TP6A).

Unmutated IGHG clones and large clones with stable SHM
frequency characterize severe COVID-19. BCR sequence ana-
lysis can provide important information about the dynamics of

the B cell response within COVID-19. Prior work77 has
demonstrated an elevated proportion of unmutated (median
SHM < 1%) IGHG B cell clones in COVID-19 patients compared
to healthy controls. This could be an indication of early class
switching before GC entry in a primary immune response. We
similarly observed that between 0% and 45.7% of IGHG clones
within each patient were unmutated (mean= 19.8%; Fig. 8d and
Supplementary Fig. 22), considering both expanded and non-
expanded clones. Further, tocilizumab-stable patients had a
higher fraction of unmutated IGHG clones compared to
tocilizumab-progressive patients (mean= 30.8% vs 11.3%,
respectively), though this difference was not significant (Supple-
mentary Fig. 22, p-value = 0.057, Wilcoxon test). A recent ana-
lysis has shown that this expansion of unmutated plasmablasts is
characteristic of hospitalized, rather than mildly symptomatic,
COVID-19 patients78. These clones were primarily composed of
memory and plasma cells, in contrast to IGHM clones, which
were primarily composed of IGHM cells (Supplementary Fig. 22).
We also observed multiple diverse B cell clones, both expanded
and non-expanded, spanning both time points. To characterize
potential affinity maturation in these clones, we built B cell
phylogenetic trees for all clones containing at least three
sequences that were either distinct or found at different time
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Fig. 9 BCR data analysis, part 2. a IGHV gene (x axis) fractional abundance (y axis) of expanded clones in each sample (label). Colors and shapes
represent patients grouped based on the status of the disease and treatment. The results are depicted in boxplots, in which the value for each patient is
represented by a dot, the upper and lower bounds represent the 75% and 25% percentiles, respectively. The center bars indicate the medians, and the
whiskers denote values up to 1.5 interquartile ranges above the 75% or below the 25% percentiles. Data beyond the end of the whiskers are outliers. N =
10 for Stable and 5 for Progressive. b PCA of IGHV genes (arrows label) based on the fractional abundance from expanded clones of each sample (points
label). Colors and shapes represent patients grouped based on treatment. c An example of a B cell clonal lineage tree. Branch lengths represent the
expected number of substitutions per codon (see scale bar). d A root-to-tip correlation analysis. Pearson correlation coefficient between divergence and
time within each B cell lineage tree (x axis), with corresponding p-values calculated using a permutation test (y axis). The size of each point corresponds to
the number of distinct sequence/time point combinations within each clone. Dashed line shows p-value = 0.05. e Number of convergent antibody clusters
within each sample. f Convergent antibodies (VDJ) that are specific to patients with stable status and under treatment. Source data are provided as a
Source Data file.
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points (largest shown in Fig. 9c). We observed a relatively high
level of SHM in these clones at time point A (mean= 4.7%). We
then used a phylogenetic root-to-tip correlation test (see “Meth-
ods” section) to determine if divergence from the germline
sequence increased between time points A and B in these 20
clones. None showed a significant positive correlation between
sample time and divergence from the sequences’ most recent
common ancestor (i.e., p-value > 0.05; Fig. 9d). These results
indicate a lack of measurable SHM accumulation between time
points in these clones. Taken together, the observed expansion of
unmutated plasmablasts and lack of measurable B cell evolution is
consistent with prior work showing evidence of disrupted
germinal-center reactions in hospitalized COVID-19 patients79.

Convergent antibody rearrangements are elicited in COVID-19
patients. We identified 19 convergent antibody clusters across
eight patients. 79% (15/19) of convergent clusters included anti-
bodies from tocilizumab-stable patients, 47% (9/19) included
antibodies from no-tocilizumab-stable patients, and 31% (6/19) of
convergent clusters included antibodies from tocilizumab-
progressive patients (Fig. 9e). We next focused on the
tocilizumab-stable patients, which were represented in the most
convergent clusters. We identified six convergent clusters which
were composed only of tocilizumab-stable patients (Fig. 9f).
These convergent antibody clusters spanned between two
patients, and were composed of IGHV1-46/IGHJ3, IGHV3-23/
IGHJ6, IGHV3-33/IGHJ6, IGHV3-48/IGHJ3, IGHV4-59/IGHJ6,
IGHV5-51/IGHJ4 genes.

Taken together, our multi-omics single-cell analysis revealed
dynamic immune responses in patients with a stable and
progressive manifestation of COVID-19 under tocilizumab
treatment. Our comprehensive immune profiling underscores
the overwhelming IFN-I response and desynchronized adaptive
and innate immune interaction in COVID-19. Joint profiling of
gene expression and surface proteins uncovered hyper IFN-I
response in activated T cell subset in progressive patients.
Excessive regulatory innate immune response and unique co-
inhibitory receptor expression in activated T cells are hallmarks of
progressive disease. Skewed T cell repertories in CD8+ T cell and
uniquely enriched VDJ sequences are identified in COVID-19
patients. Plasmablasts expansion without acquiring somatic
hypermutation is consistent with an early primary and/or
extrafollicular response during the acute phase of SARS-CoV-2
infection. Lastly, we characterize the cellular response to
tocilizumab, including decreased expression of S100A8/9 in
tocilizumab-treated patients across most cell types.

Discussion
Although initial studies in COVID-19 patients with severe
respiratory failure revealed a dysregulated immune system with
hyper-inflammatory responses and lymphopenia12–14,80–82, there
are critical deficits in our understanding of the mechanisms
underlying this immune dysfunction. Here, we applied multi-
modal single-cell analysis using 5′ scRNA-seq, CITE-seq, TCR,
and BCR sequencing on 18 samples from 10 patients with
COVID-19, which were compared to 13 control samples. Our
experimental design allowed us to determine: (1) the dynamics of
the immune response in COVID-19 over time; (2) general
immune cell features in COVID-19 patients; (3) the specific
immune signature associated with progressive disease; (4) an in-
depth exploration of adaptive immunity using T cell and B cell
repertoire analysis in COVID-19; and (5) the effects of tocilizu-
mab treatment. Our unbiased systems biology approach utilizing
novel multimodal single-cell analysis techniques reveals the
temporal dynamics of immune responses to this disease. It

highlights the unique immune features that distinguish stable and
progressive COVID-19 patients. The immunological networks
characterized in our study improve the understanding of the
abundant cellular interactions and effects that promote pathology
in severe disease, including dyssynchrony of the innate and
adaptive immune response.

We observed dominant effects of a type-1 IFN response across
all immune cells in all COVID-19 patients, especially at the earlier
time-point A, consistent with the acute viral infection83. In this
regard, we highlight the IFN-activated CD8+ T cell cluster as the
extreme archetype of type-1 IFN response in T cells, which was
almost exclusively found in COVID-19 patients, especially at
time-point A (Fig. 1f). Type-1 IFN response was the main driver
of gene expression changes between progressive and stable sub-
jects, as depicted in Fig. 2a. Progressive patients had higher
expression of ISGs in all major cell types. Type-1 IFN response, as
reflected by the IFN gene score, decreased overwhelmingly from
time point A to B in all patients, and was highly correlated with
time (R= 0.97, Fig. 2f, g). This is not surprising given that the
first blood draw was obtained at least 5 days after the beginning of
symptoms, the onset of which occurs a median of 5.2 days after
infection84. At this time-point, patients are expected to be on the
descending slope of the viral load curve30, which type-1 IFN
response closely follows (R= 0.8 for the correlation between log10
viral load and IFN score, Fig. 2e). Interestingly, the ISG signature
at the later time-point B returned towards control level in all
patients except for two out of four in the progressive group
(Fig. 2a), in which both IFN score and viral load remained
relatively high. This is consistent with a previous study in which
severe COVID-19 patients had a higher viral load and longer
virus shedding than mild cases85.

The joint profiling of gene expression and surface proteins shed
light on a specific T cell population that expressed higher
HLADR, CD38, and cell cycle markers (MKI67, PCNA, AURKA)
and expanded with time. Although there was no significant dif-
ference in frequency noted between progressive vs stable COVID-
19 patients in our cohort, we demonstrated the enrichment of
ISGs and a unique set of co-inhibitory receptors (LAG-3 and
TIM-3, coded by HAVCR2) in progressive patients. Interestingly,
TIGIT and PD-1 (coded by PDCD1) were relatively higher in
stable patients together with TCF7 and LEF1, the markers for
progenitor exhausted T cells63. In general, T cell exhaustion is
observed in chronic infectious diseases and cancer where T cells
receive sustained stimuli to be activated for long-term in an
immunoregulatory milieu86,87. In contrast, our observation in
severe SARS-CoV-2 infection indicates that a unique activated T
cell phenotype can also be induced in acute viral infection88,
which is not commonly seen. Among signatures observed in
progressive patients, elevated LAG3 expression was detected
across most T/NK cell subsets, except for the Treg cluster16,40,71.
Given that the expression of MHC-II molecules (which are the
ligands for LAG-3) is markedly downregulated in APCs in pro-
gressive COVID-19 patients, the disruption of LAG3-MHC-II
interaction might play a critical role in COVID-19 immuno-
pathology. While the trigger-inducing LAG-3 on T cells is not
well understood, co-expression of ISGs in T cells from progressive
patients suggests a possible role of IFN-I on LAG-3 expression.
Further studies focusing on the molecular mechanisms by which
SARS-CoV-2 induces LAG-3 on T cells are warranted.

A skewed phenotype of myeloid cells toward a regulatory/
immunosuppressive signature has been previously reported in
severe COVID-1913,14. In contrast, a pro-inflammatory monocyte
phenotype has been shown by others in patients with severe
COVID-1980–82. Our findings of an anti-inflammatory monocyte
cluster that is increased in COVID-19 patients, along with sup-
pressive/tissue-repair gene expression changes in monocytes that
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are accentuated in progressive patients (including CD163, IL1R2,
AREG, MRC1, HAVCR2, LGALS9, IL10), support the former
evidence. We also observed the downregulation of IL-1β mRNA
expression in COVID-19 patients, indicating a shift from pro-
inflammatory to a regulatory phenotype in monocytes in
COVID-19. Our multimodal single-cell analysis demonstrated
that these regulatory monocytes are transcriptionally dis-
tinguished from the other classical monocytes and resemble
myeloid-derived suppressor cells (MDSCs), a heterogeneous
myeloid cell population characterized by strong immunosup-
pressive function increased in chronic infection and cancer. The
increased fraction of MDSC-like anti-inflammatory monocytes
facilitates the resolution of inflammation during acute viral
infection, transitioning from inflammation to tissue repair89,90.
However, an inadequate anti-inflammatory/tissue repair response
can delay virus clearance, cause chronic inflammation, and lead
to excessive tissue damage and even tissue fibrosis91–94. There-
fore, a regulated transition of the immune response from
inflammation to tissue repair with appropriate kinetics is essential
to restore tissue homeostasis.

We observed an increased expression of the suppressive cyto-
kine IL10 in myeloid cells and several additional cell types in the
progressive patients (Supplementary Fig. 8a). Levels of IL-10 in
plasma are known to be increased in severe COVID-19, as
reported in our recent study4 as well as by others7,31. While IL-10
is critical to protect the host from tissue damage during acute
immune responses, it also exhibits a detrimental immunopatho-
genic effect during acute viral infections by downregulation of
MHC-II expression92. Our data clearly demonstrated the upre-
gulation of IL-10 and the downregulation of MHC-II expression
in monocytes which may contribute to the detrimental clinical
course in progressive patients compared with stable ones.

Our T cell receptor repertoire analysis shows a higher expan-
sion/dominance and a lower richness of CD8+ but not CD4+ T
cell clones in progressive COVID-19 in progressive patients
relative to stable patients. In an attempt to identify specific clo-
notypes that are relevant to T cell response against SARS-CoV-2,
we studied the CDR3 motifs that are shared by several COVID-19
patients but absent from the control subjects. Using this
approach, we identified 10 CD8+ and 12 CD4+ T cell specificity
groups, and described their specific V & J gene usage patterns.
Moreover, we describe the specific CDR3 motifs that have the
highest likelihood of being COVID-19 specific. In future experi-
ments, these TCRs will be investigated for antigen specificity.

During viral infection, B cells are critical for the production of
protective antibodies. The establishment of a diverse repertoire of
antibodies is imperative to protect a host from pathogens, as well
as to generate effective immune responses. One key finding is that
CDR-H3 amino acid usage profiles were highly variable among
patients (Fig. 8g). In particular, there was no preference for any
amino acid between early and late time points in stable patients
who received tocilizumab. In contrast, progressive and stable
patients who were not treated with tocilizumab showed a dif-
ferent profile of CDR-H3 amino acid selection which generally
varied across amino acids with a trend toward increased usage of
alanine (A), aspartic acid (D), and tyrosine (Y) at time-point B
relative to A. The importance of CDR-H3-tyrosine for optimal
antibody binding was previously shown for the influenza A
virus95. Another finding focused on the detection of convergent
antibodies with highly similar VDJs across COVID-19 patients
(Fig. 8n, o).

Our V(D)J B cell receptor repertoire analysis further suggests a
complex B cell response in COVID-19. Consistent with the
expectations of a primary immune response, we observed an high
proportion of unmutated IGHG B cell clones, which has been
reported in at least one other analysis of BCR repertoires from

COVID-19 patients77. However, we also observed multiple
mutated B cell clones that were persistent across the two mea-
sures time points, but did not measurably accumulate SHM
between time points (Fig. 8l, m)96. These could result from cross-
reactivity of memory B cells with other common corona-viruses,
which has been documented in T cells86. Such memory B cells
would have already accumulated SHM and likely avoid germinal-
center re-entry97. This scenario may account for the quick
expansion of plasma cells in COVID-19 patients (Fig. 1f), which
has also been reported by others14,60. It is also possible these are
clones are non-coronavirus-specific persistent clones sometimes
observed in healthy older patients98. Importantly, these analyses
were performed over a short time interval, and used a relatively
small number of B cells with unknown specificity. We note,
however, that the lack of observable SHM increase between time
points is consistent with another recent study which found that
levels of SHM in SARS-CoV-2-specific antibodies were stable
(~3%) between 8 and 42 days post-diagnosis99.

The relatively small sample size (18 COVID-19 samples and 13
controls) is a limitation of this study, especially for the analysis of
certain subgroups (e.g., only four samples from patients who did
not receive tocilizumab). However, it is larger than many
COVID-19 single-cell multi-omics studies published to-
date14,80,81,100, and the similarity of baseline characteristics
between stable and progressive patients and in comparison, to
controls (Supplementary Table 1) helps increase confidence in
our results. Although the timing of blood draw A (time-point A)
relative to hospitalization was consistent across subjects, the
timing of blood draw B (time-point B) was variable. We mitigated
that by taking into account the variable time span between the
two blood draws in some of the analyses, e.g., for the analysis of
IFN score changes over time shown in Fig. 3a, b. This unique
exploration of gene expression changes over time adds an
essential dynamic layer that is critical to understand the biology
of an acute viral disease, although tocilizumab treatment may
have influenced the gene expression changes. However, when
comparing the gene expression at time point A and B (Fig. 2a),
most differentially expressed genes are related to the strong type-
1 interferon response rather than tocilizumab effects. This led us
to conclude that the response to the virus (rather than to the
treatment) is the main driver of gene expression changes over
time. Nonetheless, we devoted a part of the results to explore the
effects of tocilizumab by comparing gene expression changes in
the untreated patients across time to those of the treated patients,
and uncovered genes (in each cell type) whose change is likely to
be attributed to tocilizumab effects rather than time. Lastly, our
analysis mostly relied on RNA-based analyses including gene
expression and TCR/BCR repertoire analysis, with some protein-
level validation by CITE-seq and flow cytometry. Additional
mechanistic validation, while beyond the scope of this study, is
warranted in future studies.

In conclusion, our in-depth multi-omics assessment of per-
ipheral immune cells at single-cell resolution across patient
severities and time highlights the desynchronized adaptive and
innate immune response in progressive COVID-19 patients. A
prominent type-1 interferon response is observed across all
immune cells, especially in progressive patients, and wanes over
time in correlation to the decrease in viral loads. Excessive reg-
ulatory innate immune response and LAG-3 positive activated
T cells are the hallmarks of progressive disease. Skewed T cell
receptor repertoires in CD8+ T cell and uniquely enriched V(D)J
sequences are identified in COVID-19 patients. B cell receptor
repertoire analysis reveals a high level of IGHG B cell clones with
little or no somatic hypermutation, consistent with an early pri-
mary and/or extrafollicular immune response, as well as mutated
clones which may reflect stimulation of pre-existing memory B
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cells. Overall, our comprehensive immune profiling underscores
the desynchronized innate and adaptive immune interaction in
progressive COVID-19, which may lead to delayed virus clear-
ance. This high-resolution understanding of the immune cell
profiles underlying severe COVID-19 will enhance our ability to
develop immunomodulatory therapeutic approaches to prevent
progression in COVID-19 patients.

Methods
Settings. The study was performed on deidentified, cryopreserved PBMC samples
of 10 COVID-19 patients and 13 matched controls, obtained with informed con-
sent on a protocol approved by Yale Human Research Protection Program Insti-
tutional Review Boards (FWA00002571, Protocol ID. 2000027690).

Patients and samples. Ten COVID-19 patients hospitalized at Yale-New Haven
Hospital (YNHH) were recruited for this study. All were confirmed to have
COVID-19 by RT-PCR testing of nasopharyngeal samples. Four of the patients
were “Progressive” (TP6, TP7, TP8, TP9), defined as patients who required
admission to the intensive care unit (ICU) and eventually succumbed to the dis-
ease. At the same time, the other 6 were “Stable” (NS0, NS1, TS2, TS3, TS4, TS5),
defined as patients hospitalized in non-ICU internal medicine wards who were
eventually discharged. Eight patients (80%) were treated with Tocilizumab, a
humanized anti-IL6 receptor antibody. Only patients NS0 and NS1 did not receive
this drug (designated with “N”). Tocilizumab was given once at a dose of 8 mg/kg
(up to a maximal dose of 800 mg), as part of the COVID-19 treatment algorithm
used in the Yale-New Haven Health System; patients who required ≥3 l/min O2 or
≥2 l/min but with CRP > 70 were treated with tocilizumab. All patients were treated
with antivirals (Atazanavir, except for patient NS1 which was treated with
Remdesivir) and with Hydroxychloroquine (except for NS1). Two progressive
subjects were treated with corticosteroids: patient TP7 was treated with Prednisone
40 mg daily for 2–3 days just before the blood draw A, and patient TP9 was treated
with Methylprednisolone 120 mg daily for 1–2 days prior to blood draw B. No
other immunosuppressive, immunomodulatory, or antiviral agents were used.

Eighteen blood samples were collected from these ten patients, at different time
points as described in the results section and Fig. 1b, c. Thirteen control subjects
were recruited prior to the COVID-19 pandemic. Baseline characteristics of
COVID-19 patients and controls are presented in Supplementary Table 1. The
timing of symptom onset, hospitalization, tocilizumab treatment, and blood draws
for each patient is shown in Fig. 1d.

Isolation of PBMC and cryopreservation. PBMCs were isolated from whole
blood using density gradient centrifugation, according to the following protocol:
Histopaque 20 ml was added to a 50 ml SepMate tube, then overlaid with fresh
blood 1:1 diluted in PBS 2% fetal bovine serum (FBS) and centrifuged at 1200×g for
10 minutes. The PBMC layer was collected by quickly pouring the remaining
contents above the SepMate insert into a fresh tube, and washed once with PBS at
650 × g for 10 min. The supernatant was decanted and ACK red blood cell lysis
buffer (2 ml/sample) was added for 2 minutes; another wash with PBS 2% FBS was
done, followed by centrifugation at 290 × g to remove platelets and supernatant
aspirated. Following resuspension of the pellet, PBMCs were cryopreserved in
aliquots of 5 × 106 cells using 10% DMSO in heat inactivated-FBS as the cryo-
preservation solution. Cryovials were placed in a freezing container (Mr. Frosty)
and transferred immediately to a −80 °C freezer for >24 h before being transferred
to long-term liquid nitrogen storage.

Sample preparation and 10x barcoding. All sample processing steps were done in
a biosafety level 2+ laboratory. Samples were thawed in a water bath at 37 °C for
~2 min without agitation, and removed from the water bath when a tiny ice crystal
still remains. After thawing, cells were gently transferred to a 50 mL conical tube
using a wide-bore pipette tip, the cryovial was rinsed with a cold growth medium
(10% FBS in DMEM) to recover leftover cells, and the rinse medium was added
dropwise (1 drop per 5 s) to the 50 ml conical tube while gently shaking the tube.
Next, we conducted serial dilutions with cold growth medium a total of 5 times by
1:1 volume addition with ~1 min wait between additions. Cold growth medium was
added at a speed of 3–5 ml/s, achieving a final volume of 32 ml. The cells were then
centrifuged at 300 × g for 5 minutes at 4 °C, and the supernatant was removed
without disrupting the cell pellet. The pellet was resuspended in 1× PBS with 0.04%
BSA, and the sample was filtered with a 40 μM strainer. Cell concentration was
determined using Trypan blue staining with a Countess automated cell counter
(ThermoFisher). Following this cell count, each sample was split into two parts
(Fig. 1a): one was immediately loaded onto the 10x Chromium Next GEM Chip G,
according to the manufacturer’s user guide (document number CG000208, revision
E, February 2020), and the other was further processed for CITE-seq as described
in the next section, and then loaded to the 10x Chromium Chip G. In total, we
loaded 18 “conventional” samples into 18 Chip G lanes (aiming for recovery of
10,000 cells per lane), and 17 out of 18 “CITE-seq” samples into 6 Chip G lanes
(each lane containing 5-6 pooled hashed samples, as portrayed in Supplementary

Data 6). One out of 18 CITE-seq samples (TP8B) was not pooled because of very
low cell concentration.

CITE-seq and cell hashing. The lyophilized Total-seq C human panel (BioLegend)
was resuspended with 35 μl of wash buffer, vortexed for 10 s, and incubated for
5 min at RT. Total-seq C human Hashtag antibodies (Biolegend) were centrifuged
at 20,000 × g for 10 min and 6-fold diluted with wash buffer (2% FBS and 1mM
EDTA in PBS). To maximize performance, both were centrifuged at 20,000 × g for
10 min just before adding to the cells. See Supplementary Data 5 for a list of
antibodies, clones, and barcodes used for CITE-seq and hashing samples.

PBMCs from each sample were reconstituted with wash buffer at the
concentration of 10–20 × 106 cells/ml and incubated on ice for 10 min with 5ul of
Human FC block (BD Biosciences) and 5 μl of TrueStain Monocyte Blocker
(Biolegend). 10–20 μl (0.1–0.2 × 106 cells) were transferred into a new tube and
incubated on ice for 30 min with 5 μl of CITE-seq panels and 5 μl of Hashtag
antibodies prepared as above. Cells were washed twice with wash buffer and with
2% FBS in PBS for the third wash. Samples were pooled into one tube based on cell
counts, and super-loaded onto the 10× Chromium Chip G, aiming for recovery of
~20,000 cells per sample. See Supplementary Data 5 for the details of 6 pooled
samples (CITE#1-CITE#6).

cDNA libraries preparation and sequencing. The loaded Chip G was placed in
the 10x Chromium controller to create Gel Beads-in-emulsion (GEMs). The next
steps were carried out according to the manufacturer’s user guide, including GEM-
RT incubation, post-GEM-RT Dynabead cleanup, and cDNA amplification. The
cDNA samples were used to construct 4 types of cDNA libraries, according to the
steps outlined in the user guide: gene expression libraries, T-cell receptor libraries,
B-cell receptor libraries, and cell surface protein libraries (the latter only for
samples processed with CITE-seq). cDNA libraries were then sequenced on an
Illumina Novaseq 6000 platform.

Flow cytometry. Freshly isolated PBMCs were incubated with FC block reagent
(Biolegend) for 10 min and stained with LIVE/DEAD Fixable Aqua Dead Cell Stain
kit (ThermoFisher) for 20 min at 4 °C. Following a wash, cells were then blocked
with Human TruStan FCX (BioLegend) for 10 min at RT. Cocktails of the following
antibodies were directly added to this mixture for 30 min at RT. BB515 anti-HLA-
DR (G46-6), BV605 anti-CD3 (UCHT1), BV785 anti-CD4 (SK3), APCFire750
anti-CD8 (SK1), BV421 anti-CCR7 (G043H7), AlexaFluor 700 anti-CD45RA
(HI100), PE anti-PD1 (EH12.2H7), APC anti-TIM3 (F38-2E2), BV711 anti-CD38
(HIT2), BB700 anti-CXCR5 (RF8B2), PE-Cy7 anti-CD127 (HIL-7R-M21), PE-
CF594 anti-CD25 (BC96), BV711 anti-CD127 (HIL-7R-M21), BV421 anti-LAG-3
(11C3C65). Cells were washed two times with staining buffer and acquired on a BD
Fortessa or Cytoflex flow cytometer. FlowJo software (Treestar) was used for
analysis.

SARS-CoV-2 viral load measurements. Nasopharyngeal swabs and saliva sam-
ples were collected from COVID-19 diagnosed inpatients at -Yale-New Haven
Hospital, as described elsewhere101. We extracted total nucleic acid using the
MagMax Viral/Pathogen Nucleic Acid Isolation kit (ThermoFisher Scientific,
Waltham, MA, USA) with 300 µl of input sample eluted into 75 µl, using a slightly
modified protocol (dx.doi.org/10.17504/protocols.io.bg3pjymn). A total of 5 µl of
extracted nucleic acid was used as input in the RT-qPCR assay for SARS-CoV-2
detection, as described elsewhere102. Briefly, we used the Luna Universal Probe
One-Step RT-qPCR kit (New England Biolabs, Ipswich, MA, USA) with the CDC
2019-nCoV_N1, 2019-nCoV_N2, and human RNase P (RP) primer-probe sets
(Integrated DNA Technologies, Coralville, IA, USA). Viral RNA copy numbers
were calculated based on 10-fold dilution standard curves of the previously gen-
erated nucleocapsid (N) transcript standard102.

Data processing of raw sequencing reads. Raw sequencing reads were demul-
tiplexed using Cell Ranger mkfastq pipeline to create FASTQ files. Next, Cell
Ranger count pipeline (v3.1) was employed in order to perform alignment (using
STAR), filtering, barcode counting, and UMI counting. We have used GRCh38
(Ensembl 93) as the genome reference (corresponding to Cell Ranger reference
GRCh38-3.0.0).

ScRNA-seq sample aggregation. 10× cell ranger count filtered output data of
PBMCs from thirteen healthy controls were added to that of the eighteen COVID-
19 samples. Seurat package103,104 (v3.1) was used for all downstream analyses. 10×
gene expression matrices for each sample were converted and combined into one
Seurat object. Cells with mitochondrial gene percentages higher than 12% and cells
with less than 200 genes were excluded from the study to filter out dead and dying
cells. For CITE-seq samples, following de-hashing, cell barcodes of multiplets (i.e.,
with 2 or more hashing antibody signals) or uncertain origin (i.e., with no clear
hashing signal) were also removed. After these filtering steps, the gene-barcode
matrix contained 35,538 genes and 163,452 barcoded cells.
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Integration, principal components analysis, and clustering. In accordance with
the standard Seurat preprocessing workflow, sample gene expressions were nor-
malized using Seurat’s “LogNormalize” method103,104. The “FindVariableFeatures”
function selected the 3000 genes with the highest variance to mean ratio using the
“vst” method. To remove single-subject effects, samples were integrated on a
subject level using 2000 anchors with a dimensionality of 30104. The integrated data
were then scaled with the “ScaleData” function.

Principal Component Analysis (PCA) was performed on the integrated data,
and the first 30 Principal Components (PCs) were used in the “FindNeighbors”
algorithm. The Louvain modularity optimization algorithm in “FindClusters”
generated the clusters while the resolution was set to 0.75. Thirty PCs were used in
the “RunUMAP” function to create the final UMAP, and thirty clusters were
generated from the aforementioned pipeline (Supplementary Fig. 2a).

These thirty clusters were first annotated with the SingleR software
(Supplementary Fig. 2d) and then annotated manually (Fig. 1e) by using cell-
specific markers (Supplementary Fig. 1) plotted on UMAP space, and by examining
the output of “FindAllMarkers” per cluster. Five clusters out of thirty were
removed; namely: a nonspecific cluster of low UMI cells (cluster #8), monocyte-
platelet multiplets (#22), B and T/NK multiplets (#24), erythroid cell
contamination from a single subject (#25), and B cell-platelet multiplets (#29).
Following the removal of these clusters, the final Seurat object contained
153,554 cells.

Cell type proportions analysis. For each subject, the number of cells within a
given cell type was normalized by the subject’s total number of cells. For each cell
type, cell proportions were plotted in a boxplot by disease group, namely by (1)
controls, (2) stable patients at time point A, (3) stable patients at time point B, (4)
progressive patients at time point A, and (5) progressive patients at time point B.
We used the Wilcoxon rank-sum test to compare the cell proportions of the
following three groups: control subjects, stable patients, and progressive patients.

Differential gene expression analysis. The “FindMarkers” function was used to
identify differentially expressed genes (DEGs) across the following conditions: per
cell type, (1) time point A versus time point B; (2) controls versus COVID-19
patients at time point A; and (3) progressive vs stable. For the time point com-
parison (comparison 1), the logistic regression test for differential expression with
subjects set as latent variables was used to account for paired samples. For com-
parisons (2) and (3), the default Wilcoxon rank test was used. Genes were ranked
by absolute log2 fold-change (logFC), and those with p-values > 0.05 (adjusted for
multiple comparisons) were removed.

Heatmap visualization of DEGs. DEGs were visualized as heatmaps which were
generated by using the ComplexHeatmap package105. Cell types were binned into
monocytes, CD4+ T cells, CD8+ T cells, and B cells, and “FindMarkers” dis-
tinguished DEGs for each cell type bin for (1) time point A versus time point B and
(2) progressive versus stable. Genes with greater than 0.5 absolute logFC were
included in visualization and EnrichR pathway analysis. Samples for the pro-
gressive versus stable time-point were hierarchically clustered.

Gene pathway annotation. Gene list outputs from the “FindMarkers” function
were fed into EnrichR for pathway and ontology analysis106,107. Gene set enrich-
ment analysis108 was also performed on “Dividing T cells” cluster using
KEGG109–111 and MSigDB Hallmark gene sets112, and custom gene sets (Supple-
mentary Data 8).

Gene list score analysis. Seurat Function “AddModuleScore” was used to com-
bine the expression of genes from IFN Score A113 (ISG15, IFI44, IFI27, CXCL10,
RSAD2, IFIT1, IFI44L, CCL8, XAF1, GBP1, IRF7, CEACAM1). This function was
also used to combine other gene list scores as well, including scores for HLA type II
(HLA-DRA, HLA-DQA1, HLA-DPA1, HLA-DRB1, HLA-DPB1, HLA-DRB5, HLA-
DQB1, HLA-DMA, HLA-DMB) and the IL6 pathway (ARID5A, SOCS3, PIM1,
BCL3, BATF, MYC)49. The differences in gene list scores were compared between
(1) control versus COVID-19 patients, (2) time point A and time point B, and (3)
progressive versus stable patients. For consistency with DEG analysis and
assumption of non-normality, Wilcoxon rank-sum tests were conducted on the
gene set “module scores” to compare between any two given conditions and cor-
rected for multiple comparisons (i.e., family-wise error rate (FWER)).

Demultiplexing (de-hashing) of CITE-seq samples. In order to demultiplex cells
in the CITE-seq samples and attribute them a biological sample, hashing antibody-
derived tag (ADT) counts were normalized by library size, square-root trans-
formed, and normalized for every row in the data matrix of each CITE-seq sample.
To account for the inherent background noise of ADT and accurately identify a cell
as tagged by a hashing ADT, histograms of each hashing ADT counts in each
CITE-seq sample were used to determine the optimal threshold of significance for
hashing ADTs. As distributions appeared bimodal for the majority of hashing, we
manually set the threshold between the two modes.

Based on the previous threshold, data matrix rows with two or more significant
ADT were flagged as doublets, and rows with zero significant ADT flagged as
unidentified, thus removed for downstream analysis.

CITE-seq ADT preprocessing and downstream analysis. Once the cells were
demultiplexed and hashing ADT counts were removed, the remaining ADT counts
(192) for each CITE-seq sample were combined into one single matrix. The counts
for the remaining 43,349 cells were normalized by library size and square root
transformed. We visualized the data set using Uniform Manifold Approximation
and Projection (UMAP). Cells were clustered using the Louvain community
detection on a 15-nearest neighborhood graph and were manually annotated using
a panel of ADT markers for each cell type (cell types include: CD4+ T cells, CD8+

T cells, B cells, NK cells, monocytes, macrophages, DCs, plasma cells, neutrophils,
eosinophils, platelets, and red blood cells). We also manually annotated the clusters
based on surface marker lists proposed by the Human Immunology Project
Consortium (HIPC) (https://www.immuneprofiling.org) (Supplementary Data 7).
As gene expression (GEX) data from CITE-seq was incorporated in the standard
scRNA-seq analysis, there were two different annotations: one based on GEX, and
one based on ADT. To measure the concordance between the two annotations, the
percentage of shared cells between each annotated cluster was computed (Sup-
plementary Fig. 14b).

Differential expression analysis was performed using the Wilcoxon rank-sum
test, and p-values were adjusted for multiple hypothesis testing using the
Benjamini–Hochberg correction. Data preprocessing and analysis (for ADT
analysis only) was performed in Python (version 3.8.0) using Scanpy (version
1.4.6)114.

Differential connectivity (connectomic) analysis. For connectomic analysis, the
cell parcellation shown in Fig. 1e was used except for IFN-activated CD8+ T cells,
which were lumped into the Effector T cell cluster. These data were then mapped
against a version of the FANTOM5 database of ligand–receptor interactions,
modified to include additional immunomodulatory cues of interest to the authors
(Supplementary Data 9). Each parcellation, in a given experimental condition, was
then treated as a single signaling node for network analysis. Average expression
values were calculated for all ligand and receptor genes on a per-cell-type basis.
Then an unfiltered edgelist (connectome) was created linking all producers of a
ligand to all producers of a receptor, with associated quantitative edge attributes, as
previously described.

To compare experimental conditions, the connectomes from two experimental
conditions were directly compared to yield log-fold changes for the sending
(ligand) side and receiving (receptor) side of all edges. In addition, a “perturbation
score” was calculated, which allows plotting of differential edges proportional to the
degree of change, allowing both negative and positive log-fold changes and
incorporating information from both sides of a given edge. The perturbation score
that we used was defined, for every cell vector from Celli to Cellj for
ligand–receptor mechanism (k), as:
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Edges were then plotted which (1) had >10% of the sending and receiving

cluster expressing the given ligand and receptor, respectively, and (2) which
displayed an adjusted p-value < 0.05 via a Wilcoxon Rank-Sum test comparing
identical cell types to each other across experimental conditions.

Chord diagram plotting was performed using a custom implementation of the
circlize package with directed edge thickness between cell type nodes proportional
to the above-described perturbation score, scaled per-plot. The software used for
the connectomic analysis is available at https://github.com/msraredon/
Connectome (https://doi.org/10.5281/zenodo.5574620) (ref:https://doi.org/
10.1101/2021.01.21.427529v1).

Tocilizumab treatment effect analysis. To investigate the treatment effects of
tocilizumab on transcription levels for different cell types, we conducted differential
expression analysis between the two sampling time points for patients in the
tocilizumab treatment group and those in the non-tocilizumab group separately.
The logFC from these two separate analyses, i.e., for the tocilizumab group and
non-tocilizumab group, was scatter plotted for each cell type in order to identify
genes in which the differential expression pattern observed between the two-time
points is due to a treatment effect rather than the natural course of the disease
progression (Fig. 5c). In addition, we investigated the correlations across cell types
and compared results between the tocilizumab and non-tocilizumab groups
(Supplementary Fig. 13). Six IL-6 pathway-related genes, which are known to be
associated with tocilizumab treatment49, are highlighted in red (Fig. 5c and Sup-
plementary Fig. 13). All the entries in the heatmap matrix (Fig. 5e) are the dif-
ferences in logFC between tocilizumab and non-tocilizumab groups.

T cell receptor V(D)J data processing. The raw sequencing reads of the T cell
receptor (TCR) libraries were processed using the Cell Ranger V(D)J pipeline by
10x Genomics™, which assembled read-pairs into V(D)J contigs for each cell,
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identified cell barcodes from targeted cells, annotated the assembled contigs with
V(D)J segment labels and located the CDR3 regions. We only considered V(D)J
contigs with high confidence defined by cell ranger under the default settings for
downstream analysis. Contigs that were not recognized as either alpha chain or
beta chain and cells with no beta chains were removed. Only the alpha and beta
chains with the largest UMI count were kept for cells with more than one alpha
and/or beta chains. After the filtering, each cell has only one beta chain contig and
zero or one alpha chain contig.

The data were further examined and processed for sample-to-sample
contamination and potential cell doublets. First, we removed cells with cell
barcodes found in more than 2 samples. Second, cells barcodes overlapped between
TCR and BCR data were extracted and checked for their cell types determined
based on the scRNA-seq gene expression data. Only cell barcodes from T cells were
kept. Finally, we checked the gene expression-based cell types of all cells, and cells
without an assigned cell type or not belonging to the T cell category were removed.
The T cell category includes 13 cell types: Naive CD4+ T, Tregs, Naive CD8+ T,
Effector T, NK CD56dim, Memory CD4+ T, NK CD56bright, Dividing T & NK,
Memory CD8+ T, Dying T & NK, Memory CD4+ & MAIT, Gamma-delta T, and
IFN-activated CD8+ T.

TCR clone Identification. Before defining clones, we re-annotated the contigs
using Change-O70. A TCR clone was defined as a group of cells sharing an identical
nucleic acid sequence of TCR alpha chain and beta chain in the repertoire of the
same subject.

Specificity group identification by GLIPH2. It was observed that antigen-specific
pools of TCRs were enriched for similar CDR3 sequences115. To identify clone
clusters of TCRs with a high probability of sharing antigen specificity (specificity
groups), we applied GLIPH272 to cluster CD4+ and CD8+ TCR clones from all
samples. Clones from the same cluster are predicted to bind the same antigen.
Significant clonal groups reported by GLIPH2 were identified based on either local
motif-based similarity (shared CDR3 amino acid motifs are comparatively rare in a
reference population of naive T-cells) or global similarity (CDR3 differing by up to
one amino acid). GLIPH2 assesses the quality of clusters by their global/local
similarities, cluster size, and enrichment of common V-genes, a limited CDR3
length distribution, and clonally-expanded clones. The confidence of identified
clusters was examined by Fisher’s exact test, which tests for the enrichment of
unique CDR3s in each cluster compared to the reference naive CD4+ and CD8+ T
cell repertoire provided in GLIPH2. The V and J gene usage was calculated as the
frequency of clones with the corresponding genes in a given clone cluster.

B cell receptor V(D)J data processing. B cell receptor (BCR) V(D)J repertoire
data processing and analysis were carried out using tools in the Immcantation
framework (www.immcantation.org). V(D)J genes were re-assigned from Cell-
Ranger output using IgBLAST v.1.15.0. Cells with multiple IGH V(D)J sequences
were assigned to the most abundant IGH V(D)J sequence by UMI count. Following
V(D)J gene annotation, non-functional sequences were removed from further
analysis, and functional V(D)J sequences were assigned into clonal groups using
Change-O v.1.0.0. Sequences were first partitioned based on common IGHV gene
annotations, IGHJ gene annotations, and junction lengths (the junction region is
defined as the complementarity-determining region-3 plus the conserved flanking
amino acid residues). Within these groups, sequences differing from one another
by a length normalized Hamming distance of 0.15 within the junction region were
defined as clones by single-linkage clustering116 using the DefineClones function
from Change-O v.1.0.0 package. This distance threshold was determined at an
equal distance between the two modes of the within-sample bimodal distance-to-
nearest histogram across all patients. The distance-to-nearest distribution was
calculated using distToNearest function from SHazaM v.1.0.0 in R v.3.6.3.
Germline sequences were then reconstructed for each sequence with D segment
and N/P regions masked (replaced with “N” nucleotides) using the Create-
Germlines.py function within Change-O v.1.0.0. The IMGT/GENE-DB v3.1.26
reference database was used to assign B cell gene segments.

Expanded B cell clonal lineages identification. We identified expanded clonal
lineages based on the fractional abundance of each lineage. The fractional abun-
dance of a lineage is defined as the number of cells within that lineage divided by
the total number of cells observed in the repertoire at a given time point. Expanded
lineages were identified among lineages with fractional abundance above 1% of the
repertoire at either time point. To account for the low sequencing depth, we further
required expanded clones to contain at least 5 cells.

Analysis of somatic hypermutation (SHM) from single-cell V(D)J library.
Mutations in IGHV and IGHJ relative to germline sequences were quantified using
SHazaM v.1.0.0 in R v.3.6.3.

CDR3 amino acids information content. For a given patient we computed the
frequency of observed amino acids in the CDR-H3 segment for each time point A
and B. Then, the fold changes were calculated as the log2 ratio of each amino acid

frequency at B divided by the corresponding amino acid frequency at A. Finally,
each full change was multiplied by the frequency of amino acid at B to calculate the
conditional information content of the given amino acid.

Convergent antibody identification. To identify putative SARS-CoV-2-specific
antibody signatures, we first grouped together heavy chain sequences that utilized
the same IGHV and IGHJ gene, and had CDR-H3 regions with the same length.
We then grouped these sequences using single-linkage clustering with a threshold
of 85% amino acid identity in the CDR-H3 sequence. Within these clusters, we
identified sequences that were found in at least two COVID-19 patients.

Identification of unmutated IGHG clones. As specified in a recent study77, B cell
clones consisting of any cellular subtype (naive, memory, plasma) were separated
by isotype. These isotype-specific clonal clusters were considered “unmutated” if
the median SHM frequency of their constituent sequences was <1%.

Lineage tree analysis. B cell lineage trees were built for all clones found at both
time points using IgPhyML v1.1.3117 and Change-O v1.0.070. Within each time-
point, identical sequences and those differing only by ambiguous characters (e.g.,
“N”) were collapsed. Only clones containing at least three distinct sequences (i.e.,
sequences that were either unique or sampled at different time points) were
included. We estimated maximum likelihood tree topologies and branch lengths
for each clone, as well as repertoire-wide model parameters, shared among all
clones, using the GY94 model118. Using these tree topologies, we then estimated
maximum likelihood branch lengths for each clone and repertoire-wide substitu-
tion model parameters using the HLP19 model with separate ω parameters for
FWR and CDR partitions and separate h parameters for all six canonical somatic
hypermutation (SHM) hot- and cold-spot motifs117. Branches with lengths < 0.001
were collapsed to zero. Trees were visualized using ggtree v2.0.2119. We used a
root-to-tip correlation test120 to test for evidence of continued SHM between time
points within these B cell lineage trees. For each tip we calculated the divergence,
which is the sum of branch lengths leading to the most recent common ancestor
(MRCA) of all observed sequences. Predicted germline sequences were excluded
because their sampling time is unknown. Clones in which all sequences were
equally diverged from the MRCA were discarded. We then calculated the Pearson
correlation coefficient between divergence and time point (A = 0, B = 1). If B cell
clones continued to accumulate SHM between time points, we would expect a
positive correlation between divergence and time. We tested the significance of this
correlation by randomizing time point labels within each tree, re-calculating the
correlation between divergence and time, and repeating for 10,000 repetitions. We
calculated the p-value that the correlation was positive as the proportion of repe-
titions in which the observed correlation was less than or equal to the correlation in
randomized trees.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Our data have been deposited in the GEO database under accession code GSE155224.
The results can be further explored through the COVID-19 Cell Atlas Data Mining Site
(www.covidcellatlas.com). This user-friendly site has a graphical user interface for quick
visualization of our scRNA-seq data, which allows users to (1) explore the expression
levels of single genes or gene sets of interest across all cell types and (2) conduct
comparisons of COVID-19 vs controls, progressive vs stable patients, and early vs late
time points across all immune cells in our data set. Source data are provided with
this paper.

Code availability
The software used for the connectomic analysis is available at https://github.com/
msraredon/Connectome. (https://doi.org/10.5281/zenodo.5574620) (ref: https://doi.org/
10.1101/2021.01.21.427529v1).
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