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SUMMARY

Inflammation-mediated neurodegeneration occurs
in the acute and the chronic phases of multiple
sclerosis (MS) and its animal model, experimental
autoimmune encephalomyelitis (EAE). Classically
activated (M1) microglia are key players mediating
this process. Here, we identified Galectin-1 (Gal1),
an endogenous glycan-binding protein, as a pivotal
regulator of M1 microglial activation that targets the
activation of p38MAPK-, CREB-, and NF-kB-depen-
dent signaling pathways and hierarchically sup-
presses downstream proinflammatory mediators,
such as iNOS, TNF, and CCL2. Gal1 bound to core
2 O-glycans on CD45, favoring retention of this
glycoprotein on the microglial cell surface and aug-
menting its phosphatase activity and inhibitory func-
tion. Gal1 was highly expressed in the acute phase
of EAE, and its targeted deletion resulted in pro-
nounced inflammation-induced neurodegeneration.
Adoptive transfer of Gal1-secreting astrocytes or ad-
ministration of recombinant Gal1 suppressed EAE
through mechanisms involving microglial deactiva-
tion. Thus, Gal1-glycan interactions are essential in
tempering microglial activation, brain inflammation,
and neurodegeneration, with critical therapeutic im-
plications for MS.

INTRODUCTION

Multiple sclerosis (MS) is a chronic inflammatory demyelinating

and degenerative disease of the CNS. The clinical disease

course usually starts with reversible episodes of neurological
disability (relapsing-remitting MS, or RRMS), which later de-

velops into a progressive stage with irreversible neurological

decline (secondary progressive MS, or SPMS) (Trapp and

Nave, 2008). Axonal loss occurs in both the acute and chronic

phases of MS and its animal model, experimental autoimmune

encephalomyelitis (EAE), and the loss of compensatory CNS

mechanisms contributes to the transition from RRMS to SPMS

(Zamvil and Steinman, 2003).

Activated microglia and macrophages are thought to con-

tribute to neurodegeneration, as their number correlates with

the extent of axonal damage in MS lesions (Bitsch et al., 2000;

Rasmussen et al., 2007) and with neuronal dysfunction in EAE

(Weiner, 2009). Microglia and macrophages can be activated

by the cytokines interferon-g (IFN-g), interleukin-17 (IL-17), or

lipopolysaccharide (LPS) into a proinflammatory phenotype

(M1), whereas IL-4 or IL-13 induce a state of alternative activa-

tion (M2), which is associated with neuroprotective functions

that promote repair (Ponomarev et al., 2007; Butovsky et al.,

2006; Kawanokuchi et al., 2008).

Recent efforts toward decoding the information encoded by

the glycome revealed essential roles of glycan-binding proteins

or lectins in the regulation of immune tolerance and inflammation

(Rabinovich and Croci, 2012). Galectins, a family of endogenous

lectins, function in the extracellular milieu by interacting with

a myriad of glycosylated receptors on the surface of immune

cells (Rabinovich and Croci, 2012). However, these lectins

may also play roles inside the cells, including modulation of

intracellular signaling pathways. Although originally defined by

their ability to recognize the disaccharide N-acetyllactosamine

[Galb(1–4)-GlcNAc; LacNAc], recent evidence indicates sub-

stantial differences in the glycan-binding preferences of indi-

vidual members of the galectin family (Rabinovich and Croci,

2012). Galectin-1 (Gal1; encoded by Lgals1) has been implicated

in the regulation of innate and adaptive immunity. In the

periphery, Gal1 promotes selective apoptosis of T helper (Th) 1

and Th17 cells (Toscano et al., 2007), induces IL-10 secretion
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Figure 1. CNS Expression of Gal1 Is Dynamically Regulated during EAE

(A–F) Gal1 mRNA and protein expression in mouse spinal cord tissue and confocal microscopy of spinal cord white matter sections from CFA-immunized

(control), preclinical EAE (preclinical, 10 dpi), acute EAE (acute, 20 dpi), and chronic EAE (chronic, 40 dpi) mice.

(A) Relative Gal1 mRNA expression in mouse spinal cord tissue.

(B) Mean fluorescence intensity (MFI) of Gal1 immunoreactivity in mouse spinal cord white matter (wm).

(C) Immunoblot of Gal1 expression in mouse spinal cord tissue.

(D–F) Confocal microscopy analysis. Sections were stained with Gal1 antibody (green), the nuclear marker Topro3 (blue) and GFAP (D, red), CD4 (E, red), or

CD11b (F, red) antibodies. Scale bars represent 20 mm (left panel). Right panels show three-dimensional (3D) reconstruction ortho-view micrographs of

representative cells. The images of every marker were acquired using the same parameters.
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(van der Leij et al., 2007; Stowell et al., 2008; Cedeno-Laurent

et al., 2012), inhibits T cell trafficking (Norling et al., 2008), and

decreases antigen-presenting capacity and nitric oxide (NO)

production by macrophages (Barrionuevo et al., 2007; Correa

et al., 2003). Furthermore, exposure to Gal1 promotes the differ-

entiation of IL-27-producing tolerogenic dendritic cells (DCs)

(Ilarregui et al., 2009) and favors the expansion of inducible regu-

latory T (iTreg) cells (Toscano et al., 2006); however, the function

of this lectin on endogenous CNS innate immunity is unknown.

Here, we show that endogenous and exogenous Gal1 plays

a pivotal role in deactivating classically activated microglia and

promoting a phenotype of alternative activation throughmodula-

tion of the mitogen-activated protein kinase p38 (p38MAPK),

cAMP response element binding (CREB), and nuclear factor

kappa-light-chain-enhancer of activated B cells (NF-kB) sig-

naling pathways. This effect involved binding of Gal1 to core

2 O-glycans on CD45, which promoted retention of this gly-

coprotein on the microglial cell surface and augmented its

phosphatase activity. In vivo, Gal1 prevented microglial acti-

vation and promoted neuroprotection. Our findings suggest a

glycosylation-dependent mechanism for preventing inflamma-

tion-induced neurodegeneration through selective deactivation

of microglial cells.

RESULTS

Dynamic Regulation of Endogenous Gal1 in CNS Cells
Gal1 expression in the spinal cord was analyzed at the mRNA

level (Figure 1A) and at the protein level (Figures 1B and 1C) in

the white matter of the spinal cord tissue in naive mice and in

mice with MOG-induced EAE at the preclinical stage (day 10

postimmunization), at the peak of disease (day 15–16 postimmu-

nization), and at the chronic stage (day 30–40 postimmunization).

In naive mice, there was very little expression of Gal1 in the CNS,

but during the preclinical phase, Gal1 protein expression was

increased (Figures 1B and 1C), whereas Gal1 mRNA expression

was unchanged (Figure 1A). Gal1 expression was highest at the

peak of disease and persisted at lower levels during the chronic

phase of EAE (Figures 1A–1C). Of note, Gal1 was highly ex-

pressed in GFAP+ astrocytes bordering the lesion area (Fig-

ure 1D), in a subset of CD4+ T cells (Figure 1E), and in a subset

of CD11b+ cells (Figure 1F) during preclinical and acute EAE.

During the chronic phase of EAE, only astrocytes maintained

considerable expression of this lectin (Figure 1D).

These observations prompted us to investigate the potential

stimuli that induce expression of this lectin. In astrocytes, we

observed strong downregulation of Gal1 mRNA following stimu-

lation with LPS or IL-17A, a slight increase after IFN-g treatment,

and strong upregulation after exposure to anti-inflammatory

stimuli, such as IL-4, transforming growth factor b1 (TGF-b1),

and Gal1 itself (Figure 1G). However, only stimulation of astro-

cytes with IL-4 and TGF-b1 led to a significant increase in

secreted Gal1 (Figure 1G).
(G) Effect of stimulation of astrocyteswith LPS (10 ng/ml), IFN-g (10 ng/ml), IL-17A

Gal1 mRNA expression and secretion.

Data are representative (C–F) or are the mean ± SEM (A, B, C, and G) of three ind

arbitrary units; HC, healthy control.

See also Figure S1.
We then analyzed Gal1 mRNA expression and Gal1 secretion

in in vitro-differentiated Th1, Th2, Th17 and iTreg cells, and Gal1

mRNA expression in ex vivo-isolated natural regulatory T (nTreg)

cells. Gal1 mRNA was downregulated in Th1 and Th2 cells,

but not in Th17 and iTreg cells, as compared to nonpolarized

activated T cells (Th0) (Figure S1A available online). Moreover,

there was a trend toward a decrease in Gal1 secretion in all

subsets as compared to nonpolarized T cells (Figure S1B).

FoxP3+GFP+ nTreg cells that were isolated from the spleen

of naive mice showed higher Gal1 mRNA expression com-

pared to FoxP3�GFP� cells (Figure S1C). Similarly, FoxP3+CD4+

T cells isolated from the CNS showed increased Gal1 expression

compared to the FoxP3� population during preclinical and acute

EAE (Figure S1D), although both populations had increased

expression during acute EAE compared to preclinical EAE.

Similar to our observations in astrocytes, anti-inflammatory

or Th2 cell-type stimuli led to substantial upregulation of Gal1

mRNA expression and secretion in microglia, whereas Gal1

mRNA was downregulated upon exposure to LPS or IFN-g

(Figures S1E and S1F). Exposure to IL-17A did not affect Gal1

mRNA expression or Gal1 secretion. Furthermore, Gal1 itself

slightly increased Gal1 mRNA expression (Figure S1E), suggest-

ing that Gal1 might act in an autocrine manner to control micro-

glial responses.

Gal1 Controls M1 Microglial Activation through
Modulation of p38MAPK, CREB, and NF-kB Signaling
Pathways
Activation with LPS or IFN-g induces an M1 phenotype in micro-

glial cells that is characterized by high major histocompatibility

complex class II (MHC II), CD86, and inducible nitric oxide

(iNOS) expression and production of proinflammatory cytokines

and chemokines, such as tumor necrosis factor (TNF) and CCL2,

whereas stimulation with IL-4 induces an M2 phenotype charac-

terized by arginase expression (Ponomarev et al., 2007). We

investigated the binding of Gal1 to M1 or M2 microglia. Gal1

bound to isolated primary microglia in a dose- and saccharide-

dependent fashion (Figure 2A and Figure S2). Gal1 binding

was markedly increased when microglia were polarized toward

an M1 phenotype (Figure 2A). In contrast, Gal1 binding to

M2-polarized microglia was substantially decreased compared

to unstimulated microglia (Figure 2A). To determine whether

differential binding to M1- or M2-activated microglia correlates

with distinct glycosylation signatures, we compared the glyco-

phenotype of these cells using a panel of plant lectins that selec-

tively recognize specific oligosaccharide sequences (Toscano

et al., 2007). Whereas Sambucus nigra agglutinin (SNA) recog-

nizes a2-6-linked sialic acid, which interferes with Gal1 bind-

ing, Maackia amurensis agglutinin (MAL II) binds to a2-3 sialic

acid linkages, L-phytohemagglutinin (L-PHA) recognizes b1-6

branching on complex N-glycans, peanut agglutinin (PNA) rec-

ognizes asialo-galactose b1-3-N-acetylgalactosamine (core-1)

O-glycans, andHelix pomatia (HPA) binds specifically to terminal
(10 ng/ml), IL-4 (10 ng/ml), TGF-b1 (5 ng/ml), and recombinant Gal1 (5 mg/ml) on

ependent experiments. *p < 0.05; **p < 0.01; ***p < 0.005 versus control. AU,
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Figure 2. Gal1 Differentially Modulates Microglia Activation In Vitro

(A) Flow cytometry of resting and polarized microglial subsets incubated with increasing concentrations of recombinant Gal1.

(B) Expression of cell-surface glycans onM1 (LPS, IFN-g), M2 (IL-4), and resting (unstimulated) microglia, detected with biotinylated SNA, PNA, L-PHA, HPA, and

MAL II (black filled histograms) or with FITC-conjugated streptavidin alone (dashed open histograms). Red numbers represent the relative median of intensity

(median of intensity [lectin]–median of intensity [streptavidin control]). Bar diagrams display the lectin binding as fold change relative to unstimulated microglia.

(C) Flow cytometry of M1 microglia activated by IFN-g (24 hr). Control (IFN-g-MG) or Gal1-treated (IFN-g-MGGal1) microglia were stained with antibodies against

CD86 andMHC II. Black lines represent specific antibody binding, whereas tinted lines represent unspecific fluorescence signal. Percentage of positive cells and
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a-N-acetylgalactosamine residues (Hirabayashi et al., 2002).

Notably, we found augmented unsialylated core 1 O-glycans in

M1 (LPS or IFN-g)-polarized compared to M2 (IL-4)-polarized

microglia, as shown by abundant reactivity of these cells to

PNA. Augmented PNA reactivity indicates increased availability

of glycan structures required for elongation of core 2 O-glycans

through the action of the core 2 b1,6-N-acetylglucosaminyltrans-

ferase 1 (C2GnT1), which favors LacNAc incorporation and ga-

lectin binding (Tsuboi et al., 2011). In addition, M1 microglia

showed higher binding capacity to L-PHA, suggesting increased

b1,6 branching of complex N-glycans (ligands for galectins)

that are generated by the enzyme b1,6 N-acetylglucosaminyl-

transferase 5 (GnT5) (Partridge et al., 2004). This lectin-binding

pattern was accompanied by higher HPA reactivity in M1 versus

M2 microglia. Also, there was a trend toward higher binding of

SNA to M2 microglia, consistent with the well-recognized ability

of a2-6-linked sialic acid to interfere with Gal1 binding. Finally,

bothM1- andM2-polarizedmicroglia had similar binding profiles

for MAL II, although IFN-g-stimulated cells had lower MAL II

binding. As a2,3-linked sialic acid may allow binding of Gal1

with different affinities than asialo-LacNAc structures (Hirabaya-

shi et al., 2002), these results suggest that subtle differences

may exist in the glycoprofile of different subpopulations of clas-

sically activated (LPS or IFN-g) microglia (Figure 2B). Collec-

tively, these findings suggest that M1 microglia, but not M2

microglia, express the preferred set of glycans required for

Gal1 binding and function.

To determine whether Gal1 binding to microglia results in

phenotypic or functional changes, we first analyzed the cell

surface phenotype of these cells. In IFN-g-polarized M1 micro-

glia, surface expression of MHC II and CD86 was substantially

decreased following exposure to recombinant Gal1 (Figure 2C).

Furthermore, expression of iNOS mRNA and production of TNF

and CCL2 were significantly decreased by Gal1 in M1 microglia

(Figures 2D–2F and S3A–S3C). In contrast, M2-polarized micro-

glia experienced a relative increase in arginase and iNOS mRNA

compared to unstimuated microglia, yet exposure to Gal1 (at

its highest dose) enhanced arginase mRNA expression but

decreased iNOS mRNA expression (Figures 2G and 2H). This

effect was also observed in LPS-stimulated Gal1-treated micro-

glia (Figure S3D). AlthoughGal1 selectively deletes Th1 and Th17

cells (Toscano et al., 2007), we could find no effect of this lectin

on the viability of microglial cells at concentrations ranging from

1 to 10 mg/ml (data not shown).

The production of NO and TNF is controlled by proinflamma-

tory signaling pathways involving NF-kB (Zhang et al., 2010),

extracellular signal-regulated kinase (ERK) (Cui et al., 2010),

p38MAPK (Xing et al., 2008), and CREB (Mirzoeva et al., 1999).

We investigated the effect of Gal1 on the phosphorylation of
relative median fluorescence (rMFI) (median fluorescence intensity of specific ma

diagrams display the relative MFI and percentage of positive cells as fold chang

(D–H) Effect of Gal1 on the expression of specific activation markers of IFN-g-

(D and G) and arginase (H) mRNA or by bead-based Luminex assay for TNF (E)

(I–M) Immunoblot blot (I) and densitometric analysis (J–M) of phospho-p38MAPK

obtained from Lgals1�/� or WT mice, pretreated or not with Gal1 (5 mg/ml), and

Data are representative (B andC, upper panel; I) or are themean ± SEM (A–H and J

control. AU, arbitrary units.

See also Figures S2 and S3.
these signaling molecules in primary microglial cells from wild-

type (WT) and Gal1-deficient (Lgals1�/�) mice. LPS induced

phosphorylation of the inhibitor of kB-a (IkB-a), a negative regu-

lator of the NF-kB pathway, after 5 min, and of p38MAPK, ERK,

and CREB after 15 min of incubation (Figures 2I–2M). However,

activation of microglia with LPS in the presence of Gal1 induced

a significant decrease in the phosphorylation of p38, CREB, and

IkB-a, but only slight inhibition in the phosphorylation of ERK

(Figures 2I–2M). Thus, Gal1 acts by limiting microglial activation

mainly through modulation of p38-, CREB- and NF-kB-depen-

dent pathways. Notably, there were no significant differences

in the phosphorylation pattern of WT and Lgals1�/� microglia

exposed to Gal1 (Figures 2I–2M), suggesting that cell-intrinsic

Gal1 does not play a substantial role in the modulatory effects

of exogenous Gal1.

Gal1 Promotes Retention of CD45 on the Surface of
Microglial Cells and Augments Its Phosphatase Activity
CD45 is a heavily glycosylated protein tyrosine phosphatase that

negatively regulates M1 microglial activation, leading to the pro-

motion of an M2 phenotype (Salemi et al., 2011). Because Gal1

binds to CD45 on T cells (Earl et al., 2010), we hypothesized

that Gal1-glycan interactions may promote microglial deactiva-

tion by specifically retaining CD45 on the cell surface, thereby

augmenting its phosphatase activity and prolonging transmis-

sion of inhibitory signals. Coimmunoprecipitation experiments

with lysates of BV-2 microglial cells treated with Gal1 revealed

specific interactions between Gal1 and CD45 (Figure 3A). Sup-

porting these findings, exogenously added Gal1 colocalized

with CD45 onM1microglial cells (Figure 3B). Notably, flow-cyto-

metric analysis of nonpermeabilized cells demonstrated time-

dependent retention of CD45 on the surface of LPS-stimulated

M1 microglia exposed to Gal1 compared to cells treated with

vehicle control (Figure 3C). This resulted in deactivation of M1

microglia, as shown by the time-dependent inhibition of CD80

expression (Figure 3D). Furthermore, Gal1-treated M1 microglia

had considerably diminished colocalization of CD45 with EEA1

(an early endosomal marker), as shown by confocal microscopy,

compared to LPS-stimulated microglia treated with vehicle

control (Figure 3E), consistent with decreased internalization of

CD45. Functionally, binding of Gal1 to CD45 resulted in a time-

dependent increase in phosphatase activity (Figure 3F). This

effect was eliminated in the presence of a CD45-specific phos-

phatase inhibitor (Figure 3F), indicating that increased phospha-

tase activity was completely attributable to CD45. To dissect the

contribution of N- and O-glycans to this effect, we transfected

BV-2 microglial cells with short interfering RNA (siRNA) for

C2GnT1 and GnT5, two critical glycosyltransferases required

for biosynthesis of Gal1 ligands (Figure S4). Inhibition of core 2
rker signal–median fluorescence intensity of unspecific signal) are shown. Bar

e relative to IFN-g-treated microglia.

or IL-4-stimulated microglia as determined by quantitative RT-PCR for iNOS

and CCL2 (F).

, phospho-ERK1/2, phospho-CREB, and phospho-IkB-a in neonatal microglia

stimulated with LPS.

–M) of three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.005 versus
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Figure 3. Gal1-Glycan Interactions Promote Retention of CD45 on the Surface of Microglial Cells and Augment its Phosphatase Activity

(A) Coimmunoprecipitation followed by immunoblotting of Gal1 and CD45 expression in lysates from microglial cells incubated with LPS (10 ng/ml) for 18 hr and

further stimulated or not with recombinant Gal1. Input, whole cell lysate; IB, immunoblot; IP, immunoprecipitation.

(B) Confocal microscopy of CD45 and Gal1 colocalization in BV-2 microglial cells incubated with LPS for 18 hr and further exposed to FITC-conjugated Gal1. The

scale bar represents 25 mm. The inset scale bar represents 10 mm.

(C and D) Flow-cytometry analysis of CD45 and CD80 expression in unpermeabilized BV-2 microglial cells incubated with LPS for 18 hr and then stimulated with

PBS or Gal1 for the indicated time periods. Nonspecific binding determinedwith isotype-matched control antibodies is shown for treatment at t = 1min. Numbers

outside parentheses show the percentage of positive cells. Numbers in parentheses represent the rMFI (median fluorescence intensity of specific marker signal–

median fluorescence intensity of unspecific signal) for each time analyzed.
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O-glycan elongation through siRNA-mediated silencing of

C2GnT1 almost completely eliminated CD45-Gal1 interactions

(Figure 3G) and Gal1-induced CD45 phosphatase activity (Fig-

ure 3H), whereas interruption of complex-type N-glycan branch-

ing through siRNA-mediated GnT5 silencing had no effect (Fig-

ures 3G and 3H). Thus, O-glycan-dependent binding of Gal1 to

CD45 promotes retention of this glycoprotein on the surface of

microglial cells and augments its phosphatase activity.

Lack of Endogenous Gal1 Enhances Classical Microglial
Activation and Promotes Axonal Damage In Vivo
Activated microglia may contribute to CNS pathology or repair,

depending on the prevalent microenvironment and their mode

of activation. Whereas classically activated M1 microglia are in-

volved in inflammation-mediated neurotoxicity, alternatively ac-

tivatedM2microglia have neuroprotective functions (Kigerl et al.,

2009). To investigate the role of Gal1 in microglial activation

in vivo, we induced EAE in Lgals1�/� and WT mice. Iba+MHC

II+ microglia were considerably more abundant in Lgals1�/�

mice compared to WT EAE mice (Figure 4A), whereas healthy

control mice had no Iba1+MHC II+ cells in the CNS (data not

shown). Furthermore, Lgals1�/�mice had decreased immunore-

activity against the neuronal and axonal marker b-III-tubulin

(Tuj1) (Figure 4B), GAP43 (a marker for axonal growth cones)

(Figure 4C), and myelin basic protein (MBP; a marker of myelina-

tion) (Figure 4D). In addition, Lgals1�/� mice showed increased

GFAP+ astrocytes during ongoing EAE (Figure 4E). Thus, tar-

geted deletion of endogenous Gal1 significantly increases

axonal loss and decreases axonal outgrowth during autoimmune

neuroinflammation.

Gal1 Controls Microglia-Mediated Neurotoxicity
To gain insight into the functional consequences of Gal1-

induced microglial deactivation, we used an in vitro model of mi-

croglia-mediated neurotoxicity (Lehnardt et al., 2003). Neurons

were cocultured with resting microglia, or microglia preactivated

by LPS in the absence or presence of recombinant Gal1 or

Gal1 alone. Because neurotoxicity is closely associated with a

collapse of cytoskeleton proteins (Takeuchi et al., 2005), we

measured the intensity of immunoreactivity against microtu-

bule-associated protein 2 (Map2), the density of Map2+ cells,

and the percentage of beaded axons. Coculture with LPS-acti-

vated microglia resulted in decreased neuronal density, with

lower Map2 immunoreactivity and a higher percentage of
(E) Confocal microscopy of CD45 internalization in LPS-stimulated microglial cells

and probed with monoclonal antibodies against CD45 and EEA1. Upper panel, re

The scale bar represents 25 mm. The inset scale bar represents 10 mm. Lower pan

ImageJ Colocalization Analysis by defining a box of set dimensions and scoring

(F) CD45-specific phosphatase activity in microglia treated with LPS and further

inhibitor for the indicated time periods.

(G) Coimmunoprecipitation followed by immunoblotting of Gal1 and CD45 exp

scrambled (Scr) siRNA, stimulated with LPS (10 ng/ml) and further treated wit

experiments.

(H) CD45-specific phosphatase activity in microglial cells transfected with GnT5, C

in the absence or presence of a CD45-specific phosphatase inhibitor. Similar re

exposure to LPS, as in Figure 2.

Data are representative (A–E, G) or are the mean ± SEM (E lower panel, F, H) of
#p < 0.05 versus LPS plus Gal1. OD, optical density.

See also Figure S4.
beaded axons (Figures 5A–5D). Interestingly, coculture with

microglia preactivated with LPS and Gal1 showed significantly

better preservation of neurons (Figures 5A–5D). Moreover,

Gal1-treated resting microglia behaved like resting microglia

(Figures 5A–5D). Similar results were observed with the micro-

glial cell line BV-2 (Figures S5A–S5D). Furthermore, direct addi-

tion of Gal1 to neuronal cultures had no major effect as the

density of surviving neurons, collapse of the cytoskeleton protein

Map2, and axonal beading were not significantly altered (Figures

S5E–5H). Thus, Gal1 provides neuroprotection through deacti-

vation of M1 microglia.

Astrocytes Control Microglial Activation via Gal1
As astrocytes express substantial amounts of Gal1 during both

the acute and chronic phases of EAE (Figure 1D), we investi-

gated whether Gal1 contributes to astrocyte-mediated control

of microglial activation. We stimulated Lgals1�/� or WT neonatal

astrocytes with PBS or TGF-b1. Exposure to TGF-b1 led to

higher expression and secretion of Gal1 by astrocytes compared

to astrocytes cultured with vehicle control (Figure 1G). The re-

sulting astrocyte-conditioned medium was transferred to cul-

tures of IFN-g-activated neonatal M1 microglia. There were no

significant differences in MHC II expression in microglia incu-

bated with conditioned media from WT or Lgals1�/� astrocytes

exposed to vehicle control. However, M1 microglia that had

been exposed to conditioned media from TGF-b1-treated WT

astrocytes showed decreased activation, whereas transfer of

conditioned medium from TGF-b1-treated Lgals1�/� astrocytes

resulted in increased microglial activation (Figure 6A).

To test this hypothesis in vivo, we injected neonatal astrocytes

(5 3 105 per mouse) from Lgals1�/� or WT mice into the right

lateral ventricle of Lgals1�/� mice with EAE when they reached

a clinical score of 1 (Figures 6B and S6). Adoptive transfer of

Gal1-sufficient astrocytes to EAE-recipient Lgals1�/� mice

successfully limited the severity of the disease, whereas injection

of Lgals1�/� astrocytes failed to rescue the disease phenotype

(Figure 6C). However, WT astrocytes could not exert this sup-

pressive effect when adoptively transferred to Lgals1�/� recip-

ient mice which had been previously injected (days 7 and 9)

with clodronate-containing lyposomes for depletion of the

microglial and macrophage compartments (Figure 6C). These

data identify a CNS regulatory circuit by which astrocytes con-

tribute to the resolution of autoimmune neuroinflammation via

Gal1-dependent control of microglial activation.
treated with Gal1 or vehicle control for 30min. Cells were fixed, permeabilized,

presentative images of EEA1 (green)- and CD45 (red)-stained microglial cells.

el, CD45/EEA1 overlay normalized to total EEA1 staining determined by MBF-

the incidence of superposition in six randomly selected areas.

exposed to Gal1 in the absence or presence of a CD45-specific phosphatase

ression in lysates from microglial cells transfected with C2GnT1, GnT5, or

h Gal1. Input, whole-cell lysate. Data are representative of two independent

2GnT1, or Scr siRNA, treated with LPS and further exposed to Gal1 for 30 min

sults were observed by preincubating BV-2 microglial cells with Gal1 before

three independent experiments. *p < 0.05 versus LPS; **p < 0.01 versus LPS;
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Figure 4. Endogenous Gal1 Controls Classical Microglial Activation In Vivo and Limits EAE Neuropathology

(A–E) Confocal microscopy of spinal cord white matter of WT and Lgals1�/� mice 35 days after immunization with MOG35-55. Data are representative (images) or

are the mean (bars) ± SEM of three independent experiments. *p < 0.05; **p < 0.01.

(A) Left, spinal cord sections were stained for Iba1 (green) and MHC II (red). Insert shows low-magnification micrograph of representative cells. Middle, 3D

reconstruction ortho-view of low-magnification micrograph. Right, quantification of MHC II, Iba1 double positive microglial cells (n = 20).

(B) Left, spinal cord sections were stained for Tuj1 (green). Middle, 2.5D-intensity analysis of Tuj1 staining. Right, MFI of immunoreactivity against Tuj1.

(C) Left, spinal cord sections were stained for GAP43 (green). Middle, 2.5D-intensity analysis of GAP43 staining. Right, MFI of immunoreactivity against GAP43.

(D) Left, spinal cord sections were stained for MBP (green). Middle, 2.5D-intensity analysis of MBP staining. Right, MFI of immunoreactivity against MBP.

(E) Left, spinal cord sections were stained for GFAP (green). Middle, 2.5D-intensity analysis of GFAP staining. Right, MFI of immunoreactivity against GFAP. Scale

bars represent 20 mm.
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Gal1 Therapy Decreases Microglial Activation and
Prevents Neurodegeneration and Demyelination
To investigate whether Gal1 therapy influences EAE neuropa-

thology, we initiated treatment around the onset of clinical

disease (day 9 to 13 postimmunization), after inflammatory cells

had already entered theCNS. Administration of Gal1 significantly
256 Immunity 37, 249–263, August 24, 2012 ª2012 Elsevier Inc.
attenuated EAE severity (Figures 7A and 7B) and decreased

microglial activation in the spinal cord (Figure 7C). Accordingly,

axonal damage, neuronal degeneration, and demyelination

were substantially reduced in Gal1-treated mice, as reflected

by increased staining of Tuj1, GAP43, and MBP (Figures

7D–7F). Furthermore, Gal1 treatment also reduced GFAP
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Figure 5. Gal1 Negatively Regulates Microglia-Induced Neurotoxicity
(A–D) Twenty-four-hour coculture of pretreated microglia (untreated MG, LPS-treated MG, LPS plus Gal1-treated MG, and Gal1-treated MG) with high-density

cortical-neuronal cultures.

(A) Representative fluorescence photomicrographs of Map2+ (green) neurons. The scale bar represents 50 mm.

(B) Density of Map2+ cell bodies per mm2 (n = 10).

(C) High-magnification photomicrographs of single Map2+ neurons and pixel-intensity analysis (below). The scale bar represents 5 mm.

(D) Percentage of beaded axons per total axons (n = 10).

Data are representative (A and C) or are the mean ± SEM (B and D) of three independent experiments. ***p < 0.005.

See also Figure S5.
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immunoreactivity (Figure 7G). Of note, administration of re-

combinant Gal1 toWTmice or transfer of Gal1-expressing astro-

cytes in Lgals1�/� EAE-recipient mice also limited the viability of

CNS mononuclear cells, even in the absence of microglia (Fig-

ure S7), suggesting multiple cellular targets of Gal1 effects.

To definitively implicate microglia in the beneficial effects of

Gal1 on EAE, we stimulated neonatal microglia with LPS, Gal1,

or LPS plus Gal1 for 24 hr and injected them (53 105 per mouse)

into the right lateral ventricle of Lgals1�/� mice on day 9 postim-

munization (Figure 7H). Transfer of LPS-treated microglia re-

sulted in worsening of the clinical score compared to untreated

microglia (Figure 7I). Remarkably, transfer of microglia treated

with both LPS and Gal1 significantly ameliorated clinical disease
compared to LPS-treated microglia. Furthermore, transfer of

Gal1-treated resting microglia resulted in an even lower clinical

disease course compared to untreated resting microglia (Fig-

ure 7I), suggesting that Gal1 treatment may prevent the in vivo

activation of microglia after intracranial transfer.

DISCUSSION

In this study we identified a CNS regulatory circuit, mediated by

Gal1-glycan interactions, that contributes to neuroprotection by

deactivating classically activated microglia and inducing an

alternative M2 microglial phenotype. Endogenous Gal1 was up-

regulated in preclinical EAE, peaked during acute EAE, and
Immunity 37, 249–263, August 24, 2012 ª2012 Elsevier Inc. 257
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Figure 6. Astrocytes Control Microglial Activation and Limit EAE Severity via Gal1

(A) Flow cytometry of MHC II in cultured CD11b+ microglia. Microglia were exposed to conditioned media from control or TGF-b1-stimulated WT or Lgals1�/�

astrocytes. Percentage of CD11b+MHC II+ cells.

(B and C) Lgals1�/� mice were immunized with 200 mg MOG35-55 and injected with PBS (vehicle) or clodronate-containing liposomes (CLD) into the right lateral

ventricle (day 7 and 9 postimmunization). When reaching a clinical score of 1, mice were divided into two groups and received either WT or Lgals1�/� (knockout)

astrocytes into the same injection site.

(B) Diagram illustrating the experimental timeline (left) and injection site (right).

(C) Clinical score (left) and linear-regression curves of disease (right) for each group (dashed lines, 95% confidence intervals).

Data are representative (A, upper panel) or are the mean ± SEM (A, lower panel; C) of three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.005.

See also Figure S6.
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remained elevated, though to a lesser extent, during the chronic

phase of the disease. Whereas during preclinical and acute EAE,

Gal1 was expressed by astrocytes and a subpopulation of CD4+

T cells and CD11b+ cells, during chronic EAE, its expression was

mainly restricted to astrocytes. Furthermore, anti-inflammatory

stimuli, including Gal1 itself, increased Gal1 synthesis by astro-

cytes, an effect which was critical in limitingmicroglial activation.

Interestingly, we observed increased GFAP immunoreactivity in

the inflamed CNS of Lgals1�/� mice and decreased GFAP reac-

tivity following Gal1 treatment. In this regard, previous studies

indicated that Gal1 promotes astrocyte maturation and inhibits

astrocyte proliferation in vitro (Sasaki et al., 2004). Thus, it is

probable that, in addition to microglial cells, astrocytes may

also respond to Gal1 and contribute to disease modulation by

promoting a neuroprotective microenvironment. Moreover, our

data show that CNS-infiltrating FoxP3+ Treg cells express

more Gal1 than FoxP3� effector T cells during preclinical dis-

ease, in accordance with the suggested role of Gal1 as a medi-

ator of the immunosuppressive function of Treg cells (Garı́n et al.,

2007).
258 Immunity 37, 249–263, August 24, 2012 ª2012 Elsevier Inc.
Classically activated microglia are associated with neuro-

degeneration, whereas alternatively activated microglia have

been shown to be anti-inflammatory and neuroprotective (Kigerl

et al., 2009). We found that Gal1 displayed a significantly higher

affinity to M1-type microglia, which respond to this lectin by

downregulating activation markers, proinflammatory cytokines,

and iNOS expression and by upregulating markers that are

otherwise only seen in M2-type microglia, such as arginase. In

the absence of endogenous Gal1, classical microglial activation

is favored, concurrent with an increase in demyelination and

axonal loss and a reduction in endogenous synaptic repair.

Within CNS inflamed tissues, Iba1+ cells may be represented

either by microglia or by peripheral macrophages. Gal1 is known

to suppress macrophage activation in the periphery (Barrio-

nuevo et al., 2007); thus, it is probable that both microglia and

macrophages in the CNS will respond to Gal1 with a decrease

in classical activation. In this regard, it has been demonstrated

that type II monocytes are critical for the resolution of brain

inflammation (Weber et al., 2007), suggesting that Gal1 may

contribute to this immunoregulatory effect. Likewise, other
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members of the galectin family have also been associated with

the control of CNS microglia. This is the case of Gal3, which is

upregulated in microglia in response to ischemic brain lesions

and favorsmyelin phagocytosis (Walther et al., 2000; Rotshenker

et al., 2008), and Gal9, which signals through Tim-3 on CD11b+

CNS cells to stimulate innate immunity (Anderson et al., 2007).

Furthermore, Gal3 and Gal4 are highly expressed in oligo-

dendrocytes, favor remyelination, and contribute to amplifying

CNS inflammatory responses (Pasquini et al., 2011; Wei et al.,

2007; Stancic et al., 2012; Jiang et al., 2009; Jeon et al., 2010).

Strikingly, cell-surface binding of Gal1, as well as the glycoprofile

of classically activated microglia, recapitulates the pattern ob-

served on Th1 and Th17 cells and in mature DCs, whereas

the repertoire of cell-surface glycans observed on alternatively

activated microglia is much more similar to that displayed by

Th2 cells and immature DCs (Toscano et al., 2007; Bax et al.,

2007).

Emerging evidence indicates that multivalent lectin-glycan

interactions function by trapping glycoprotein receptors at the

cell surface and preventing their endocytosis. This effect en-

hances receptor responsiveness to extracellular inputs and

prolongs intracellular signaling (Rabinovich and Croci, 2012).

Illustrating this concept, interactions between Gal3 and GnT5-

modified N-glycans on TGF-bR or CTLA-4 (Partridge et al.,

2004; Lau et al., 2007) and binding of Gal9 to complex N-glycans

on the glucose transporter GLUT-2 (Ohtsubo et al., 2005) act

by prolonging the cell-surface half life of these receptors. Here

we found that Gal1 bound to core 2 O-glycans decorating

CD45 on microglial cells, leading to retention of this glycoprotein

on the plasma membrane and augmenting its phosphatase

activity. In line with these findings, recent studies demonstrated

that CD45 negatively regulates M1 microglia activation, leading

to the promotion of an M2 phenotype (Salemi et al., 2011).

However, CD45 phosphatase activity is also a target of the

immunoregulatory activity of Gal1 and the macrophage galac-

tose lectin (MGL) within the T cell compartment (Earl et al.,

2010, van Vliet et al., 2006). Interestingly, O-glycosylation may

dampen immune responses not only by preventing receptor in-

ternalization, but also by blocking receptor-ligand interactions.

Binding of Gal3 to core 2 O-glycans decorating tumor-associ-

ated MHC I-related chain A (MICA) reduces the affinity of

MICA for the NKG2D receptor and impairs natural killer cell acti-

vation (Tsuboi et al., 2011). Thus, lectin-glycan interactions can

adjust thresholds of cellular activation and survival through

modulation of endocytosis, trafficking, and signaling of canon-

ical receptors.

Our results demonstrate that Gal1 indirectly decreased

neuronal loss through mechanisms involving p38MAPK-,

CREB-, and NF-kB-dependent signaling pathways, which are

activated upstream of the neurotoxic molecules TNF and NO

in the microglia. Notably, in our experiments, we found no direct

effect of Gal1 on cultured neurons, different from a previous

report on neurons derived from engineered mouse embryonic

stem cells (Plachta et al., 2007). The divergence with our find-

ings may be related to the source and biochemical properties

of Gal1 used, including the prevalence of monomeric versus

dimeric or oxidized versus reduced forms of the protein. The

degeneration of peripheral neuronal processes in Lgals1�/�

mice may be due to the loss of endogenous neuron-derived
Gal1 or to differences between the peripheral nervous system

and the CNS.

Several circuits, mediated by astrocytes and microglia, were

reported to modulate CNS inflammation, including those involv-

ing Act1, a critical component of IL-17 signaling (Kang et al.,

2010). We found that IL-17 did not considerably alter Gal1

expression in microglia or astrocytes. However, given the rele-

vance of the IL-17-IL-17R axis in CNS pathology (Kang et al.,

2010; Kawanokuchi et al., 2008), future studies are warranted

to examine the crosstalk between Gal1 and IL-17 signaling in

inflammation-induced neurodegeneration.

In summary, we identified a CNS regulatory circuit by which

astrocytes negatively regulate microglial activation and temper

disease severity through Gal1-dependent mechanisms. Our

data confirm a protective role of Gal1 in autoimmune inflamma-

tion (Offner et al., 1990; Toscano et al., 2007) and demonstrate

that EAE amelioration and the underlying mechanisms of neuro-

protection are mediated by inactivation of M1 microglia, sug-

gesting that the establishment of Gal1-glycan interactions

among different glial cells may provide an endogenous mecha-

nism to limit neuropathology. Thus, targeting the Gal1-glycan

axis may represent a new therapeutic approach for diseases

involving inflammation-associated neurodegenedration, such

as MS as well as Alzheimer’s and Parkinson’s disease.

EXPERIMENTAL PROCEDURES

Mice and EAE Induction

Female C57BL/6 mice were purchased from the Jackson Laboratory (Bar

Harbor, ME, USA). Lgals1�/� mice (C57BL/6) were provided by F. Poirier

(Institute Jacques Monod, Paris). The encephalitogenic MOG35-55 peptide

(M-E-V-G-W-Y-R-S-P-F-S-R-V-V-H-L-Y-R-N-G-K) was synthesized by the

Biopolymer Laboratory (University of California, Los Angeles) and purified to

> 99% via high-pressure liquid chromatography. Lgals1�/� and WT mice

were immunized subcutaneously in two sites (left and right flanks) with

150 mg ofMOG35-55 peptide that was emulsified in complete Freund’s adjuvant

(CFA; Sigma-Aldrich, St. Louis) containing 200 mgMycobacterium tuberculosis

(Difco, Detroit). Mice received 200 ng pertussis toxin (PT; List Biological,

Campbell, CA, USA) in 0.2 ml PBS by intraperitoneal injections at the time of

immunization and 48 hr later. Control mice were immunized with CFA followed

by PT. Mice were scored daily as follows: 0, no disease; 1, loss of tail tone; 1.5,

poor righting ability; 2, hind-limb weakness; 3, hind-limb paralysis; 4, quadre-

paresis; and 5, moribund. All animals were housed in pathogen-free facilities at

the Institute of Biology and Experimental Medicine (Buenos Aires) or at the

New Research Building, Harvard Medical School (Boston) according to

National Institutes of Health (NIH) guidelines. All experiments were performed

with the approval of the HarvardMedical Area Standing Committee on Animals

and the institutional review board of the Institute of Biology and Experimental

Medicine.

Preparation of Recombinant Gal1

Purification of recombinant Gal1 was accomplished as outlined previously

(Barrionuevo et al., 2007). Potential LPS contamination was carefully removed

by Detoxi-Gel (Pierce) and tested with a Gel Clot Limulus Test (<0.5 IU/mg;

Associates of Cape Cod, Falmouth, MA, USA).

Isolation and Culture of Microglia and Astrocytes

Brains from neonatal C57BL/6 WT or Lgals1�/� mice (P0–P2) were stripped of

their meninges and minced in Ca2+-free Hank’s balanced salt solution (HBSS).

Neural tissue was digested with the Neural Tissue Dissociation Kit (P) (Miltenyi

Biotec). The cell suspension was cultured in microglial culture medium (Dul-

becco’s modified Eagle’s medium with 10% fetal bovine serum), penicillin

(50 U/ml), streptomycin (50 mg/ml), sodium pyruvate (1 mM) and L-glutamine

(2 mM) at 37�C and 5% CO2. Fresh medium was added to the culture every
Immunity 37, 249–263, August 24, 2012 ª2012 Elsevier Inc. 259



Figure 7. Gal1 Therapy Ameliorates EAE, Limits Microglia Activation, Controls Axonal Loss, and Promotes Synaptic Repair

(A) Disease score (left) of vehicle-treated and Gal1-treated (100 mg/ day) mice, immunized with 200 mgMOG35-55 and linear-regression curves of disease for each

group (right, dashed lines, 95% confidence intervals).

(B) Bielschowsky silver (upper panel) and Luxol fast blue (lower panel) staining of spinal cord after 35 days of EAE in Gal1- or vehicle-treated mice.

(C–G) Confocal microscopy of spinal cord white matter on day 35 postimmunization in Gal1- or vehicle-treated mice.
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2 days for a total period of 10–14 days. Neonatal microglial cells were shaken

off the mixed brain glial cell culture after 10 to 14 days (150 rpm, 37�C, 6 hr).

Microglial cells were washed and subjected to further analysis. Astrocytes

for in vitro use were isolated as described (Wang et al., 2008). Astrocytes for

in vivo transfer were isolated using ACSA-1 MicroBead Kit (Miltenyi Biotec).

The ACSA-1 (Astrocyte Cell Surface Antigen-1) antibody is specific for the

astrocyte transmembrane glycoprotein GLAST (Storck et al., 1992). Purity of

astrocyte preparations was checked with a GFAP antibody (BD Biosciences).

Astrocytes or microglia were stimulated with LPS (10 ng/ml), IFN-g (10 ng/ml),

IL-17 (10 ng/ml), IL-4 (10 ng/ml), IL-13 (10 ng/ml), TGF-b1 (5 ng/ml) or Gal1

(5 mg/ml) for 48 hr. Samples were stored at –80�C until subjected to further

analysis. Most in vitro deactivation experiments, particularly those involving

primary isolated microglia, were performed by preincubating cells with Gal1

for short periods (15 min to 2 hr) before adding LPS, whereas experiments

using BV-2 microglial cells (CD45 retention, endocytosis, phosphatase activity

and phenotypic markers) were conducted either by preincubating, coincubat-

ing, or adding Gal1 for different time periods after LPS treatment, yielding

similar results.

Immunoblotting and Coimmunoprecipitation

Primary neonatal microglia from WT and Lgals1�/� mice were preincubated

with or without recombinant Gal1 (25 mg/ml) for 15 min followed by stimulation

with LPS (100 ng/ml). Cells were then washed, lysed, and subjected to immu-

noblot analysis with the use of antibodies against phosphorylated and unphos-

phorylated signaling molecules (all from Cell Signaling) as described (Ilarregui

et al., 2009). For coimmunoprecipitation, 500 mg cell lysates were incubated

with 2 mg anti-CD45 or isotype-control antibodies (eBioscience). The immuno-

complexes were captured with Protein G PLUS-Agarose (Santa Cruz Biotech-

nology) and processed for immunoblotting.

Flow-Cytometry and Glycophenotypic Analysis

For assessment of Gal1 binding, recombinant Gal1 was preabsorbed with

biotinylated Gal1 antibody (R&D) overnight at 4�C. Prestimulated microglial

cells were incubated with increasing concentrations of preabsorbed Gal1 in

the absence or presence of lactose or sucrose for 1 hr at 37�C. Cells were

then incubated with allophycocyanin (APC)-conjugated streptavidin (BD

Biosciences) for 15 min at 4�C. For glycophenotyping, microglial cells were

stimulated with or without LPS, IFN-g, or IL-4 for 24 hr and then stained with

biotinylated SNA (20 mg/ml; Vector), PNA (20 mg/ml; Sigma-Aldrich), L-PHA

(2 mg/ml; Vector), HPA (20 mg/ml; Sigma-Aldrich), or MAL II (5 mg/ml; Vector)

followed by fluorescein isothiocyanate (FITC)-conjugated strepatavidin. Non-

specific bindingwas determined with FITC-streptavidin alone. For assessment

of microglial activation, microglial cells (1 3 105 cells per well) were preincu-

bated with or without recombinant Gal1 (1-10 mg/ml) for 2 hr, followed by

stimulation with LPS (25–100 ng/ml; Sigma-Aldrich), IFN-g (10–100 ng/ml;

R&D) or IL-4 (10 ng/ml; BD Biosciences) for 24–48 hr. Nonspecific binding

was blocked by incubationwithmouseCD16/CD32 antibody (BDBiosciences)

for 5 min and then surface stained with various surface markers according to

the manufacturer’s instructions (BD Biosciences). Cell-surface expression of

CD45 and CD80 was assessed with Alexa Fluor 647-labeled CD45R (BD

Bioscience) and CD80 (eBioscience) antibodies. Cells were then analyzed

on a LSRII or FACSAria flow cytometer (BD Biosciences).
(C) Left, sections were stained for Iba1 (green) and MHC II (red). Insert shows low

ortho-view of low-magnification micrograph. Right, graph represents a quantific

(D) Left, spinal cord sections were stained for Tuj1 (green). Middle, 2.5D-intensit

(E) Left, spinal cord sections were stained for GAP43 (green). Middle, 2.5D-intens

(F) Left, spinal cord sections were stained for MBP (green). Middle, 2.5D-intensit

(G) Left, spinal cord sections were stained for GFAP (green). Middle, 2.5D-intens

(H and I) Neonatal microglia were pretreated in vitro with vehicle, LPS, Gal1, or LPS

mice (day 9 postimmunization; n = 6 per group).

(H) Diagram illustrating the injection site.

(I) Clinical score (left) and linear-regression curves of disease for each group (rig

Scale bars represent 20 mm. Data are the mean ± SEM (A, C–G, and I) or are repre

***p < 0.005 versus vehicle.

See also Figure S7.
Cocultures of Microglial and Neuronal Cells

Neuronal cultures were prepared from E16–18 cortices. Meninges were strip-

ped from the brain, and cortices wereminced in Ca2+-free HBSS. Neural tissue

was digested with the Neural Tissue Dissociation Kit (P) (Miltenyi Biotec). The

cell suspension was washed and plated at 5 3 104 cells per well on laminin

(Invitrogen)-precoated glass coverslips (10 mm diameter; Electron Micros-

copy Sciences) and cultured in Neurobasal Medium (Sigma-Aldrich) with

2% B27 supplement (Sigma-Aldrich), penicillin (50 U/ml), streptomycin

(50 mg/ml), sodium pyruvate (1 mM), and L-glutamine (2 mM) at 37�C and

5% CO2. Fresh medium was added every 2 days for a total of 7–10 days.

For examination of the direct effect of Gal1, neurons were cultured with or

without recombinant Gal1 (25 mg/ml) for 48 hr. For neuro-glial cocultures,

freshly isolated primary microglial or BV-2 cells were cultured in microglial

culture medium, preincubated with or without recombinant Gal1 (10 mg/ml)

for 15 min, and further stimulated with our without LPS (100 ng/ml) for 24 hr.

Stimulated microglial cells (153 103 cells per well) were seeded with neuronal

cultures and cocultured for 48 hr.

Stereotactic Transfer of Neonatal Microglia, Neonatal Astrocytes,

and Clodronate-Containing Liposomes

Recipient mice (6–8 weeks old; five per group) were anesthetized with ket-

amine (200 mg per kg) and xylazine (10 mg per kg). Heads were secured in

a sterotaxic head frame (Stoelting, Wood Dale, IL, USA). A small hole was

drilled into the mouse skull, meninges were locally removed with H2O2, and

a 10 ml Hamilton syringe with a 29G needle was inserted into the right lateral

ventricle. Pretreated neonatal microglia or neonatal astrocytes (4–53 105 cells

in 10 ml) or clodronate-containing liposomes (7 mg/ml; 5 ml) were injected at

a flow rate of 1 ml per min at the following coordinates: anteroposterior,

�0.34 mm; lateral, 1.2 mm; and dorsoventral, 2.4 mm. After completion of

injection, the needle was left in place for an additional 5 min and then with-

drawn at a rate of 0.5 mm per minute. The resulting wound was sutured with

surgical nylon, and mice were inspected daily for postoperational care.

CD45 Phosphatase Activity

BV-2 microglial cells were preincubated with LPS (10 ng/ml) at 37�C for

18 hr, followed by stimulation with recombinant Gal1 (10 mg/ml) for different

time periods, and CD45 phosphatase activity was determined essentially as

described (van Vliet et al., 2006). In brief, cells were washed with ice-cold

PBS and lysed in Ph lysis buffer (20 mM HEPES, pH 7.2, 2 mM EDTA, 2 mM

dithiothreitol, 1% [v/v] Nonidet P-40, and 10% [v/v] glycerol containing

protease inhibitors). Cellular debris and nuclear material were removed by

centrifugation at 20,000 g for 15 min at 4�C. Phosphatase activity was deter-

mined by incubation of 20 mg of lysed proteins for 4 hr at 37�C with 2 mM

4-nitrophenyl phosphate (Roche) in CD45 Ph assay buffer (100 mM HEPES

[pH 7.2], 2 mM EDTA, and 2 mM dithiothreitol). The resulting color change

was assessed at 410 nm. Specificity was determined by the addition of

a specific CD45 phosphatase inhibitor (Calbiochem).

Statistical Analysis

Prism software was used for statistical analysis. For comparison of two

groups, the unpaired Student’s t test was used. Significant differences were

assumed at the 5% level and represented as p values (p < 0.05).
-magnification micrograph of representative cells. Middle, 3D reconstruction

ation of Iba1, MHCII double positive cells in different groups.

y analysis of Tuj1 staining. Right, MFI of immunoreactivity against Tuj1.

ity analysis of GAP43 staining. Right, MFI of immunoreactivity against GAP43.

y analysis of MBP staining. Right, MFI of immunoreactivity against MBP.

ity analysis of GFAP staining. Right, MFI of immunoreactivity against GFAP.

plus Gal1 for 24 hr before transfer to the right lateral ventricle of Lgals1�/� EAE

ht; dashed lines; 95% confidence intervals).

sentative (B–G, images) of four independent experiments. *p < 0.05; **p < 0.01;
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