19 research outputs found

    p21 regulates common activation pathways in macrophages and T cells and acts as a suppressor of inflammatory and autoimmune syndromes

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 11-12-201

    Fluoxetine decreases glutathione reductase in erythrocytes of chronically isolated wistar rats

    Get PDF
    Alterations in the antioxidative defense parameters upon chronic stress are considered critical for pathophysiology of stress related psychiatric disorders and their status in blood serves as biomarker for effects of pharmacological treatments. We investigated the modulation of erythrocyte antioxidant enzymes (AOEs): superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GLR) protein expression and activity in Wistar male rats subjected to chronic psychosocial isolation and/or treated with fluoxetine. Chronically isolated animals exhibited decreased levels of plasma corticoserone (CORT). AOEs status was not altered either by chronic social isolation or by fluoxetine. The only exception was GLR, whose level and activity were both markedly reduced by fluoxetine. Our study indicates that fluoxetine treatment of chronically isolated male Wistar rats, leads to significant reduction in the level and activity of GLR in the erythrocytes

    Distinct p21 requirements for regulating normal and self-reactive T cells through IFN-γ production.

    Get PDF
    Self/non-self discrimination characterizes immunity and allows responses against pathogens but not self-antigens. Understanding the principles that govern this process is essential for designing autoimmunity treatments. p21 is thought to attenuate autoreactivity by limiting T cell expansion. Here, we provide direct evidence for a p21 role in controlling autoimmune T cell autoreactivity without affecting normal T cellresponses. We studied C57BL/6, C57BL/6/lpr and MRL/lpr mice overexpressing p21 in T cells, and showed reduced autoreactivity and lymphadenopathy in C57BL/6/lpr, and reduced mortality in MRL/lpr mice. p21 inhibited effector/memory CD4(+) CD8(+) and CD4(-)CD8(-) lpr T cell accumulation without altering defective lpr apoptosis. This was mediated by a previously non-described p21 function in limiting T cell overactivation and overproduction of IFN-γ, a key lupus cytokine. p21 did not affect normal T cell responses, revealing differential p21 requirements for autoreactive and normal T cell activity regulation. The underlying concept of these findings suggests potential treatments for lupus and autoimmune lymphoproliferative syndrome, without compromising normal immunity.This work was supported by grants from the Ministry of Economy and Competitivity (MINECO)/Instituto Carlos III (PI081835 PI11/00950) and the CAM (MITIC S2011/ BMD2502) to DB, and from the MINECO (SAF2010-21205 and PIB2010BZ-00564) and the CAM (MITIC S2011/BMD2502) to CMA.Peer reviewe

    Cancer stem cells from human glioblastoma resemble but do not mimic original tumors after in vitro passaging in serum-free media

    Get PDF
    Human gliomas harbour cancer stem cells (CSCs) that evolve along the course of the disease, forming highly heterogeneous subpopulations within the tumour mass. These cells possess self-renewal properties and appear to contribute to tumour initiation, metastasis and resistance to therapy. CSC cultures isolated from surgical samples are considered the best preclinical in vitro model for primary human gliomas. However, it is not yet well characterized to which extent their biological and functional properties change during in vitro passaging in the serum-free culture conditions. Here, we demonstrate that our CSC-enriched cultures harboured from one to several CSC clones from the human glioma sample. When xenotransplanted into mouse brain, these cells generated tumours that reproduced at least three different dissemination patterns found in original tumours. Along the passages in culture, CSCs displayed increased expression of stem cell markers, different ratios of chromosomal instability events, and a varied response to drug treatment. Our findings highlight the need for better characterization of CSC-enriched cultures in the context of their evolution in vitro, in order to uncover their full potential as preclinical models in the studies aimed at identifying molecular biomarkers and developing new therapeutic approaches of human gliomas.Peer reviewe

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    The Role of IFN-β during the Course of Sepsis Progression and Its Therapeutic Potential

    Get PDF
    Sepsis is a complex biphasic syndrome characterized by both pro- and anti-inflammatory immune states. Whereas early sepsis mortality is caused by an acute, deleterious pro-inflammatory response, the second sepsis phase is governed by acute immunosuppression, which predisposes patients to long-term risk for life-threatening secondary infections. Despite extensive basic research and clinical trials, there is to date no specific therapy for sepsis, and mortality rates are on the rise. Although IFN-β is one of the most-studied cytokines, its diverse effects are not fully understood. Depending on the disease or type of infection, it can have beneficial or detrimental effects. As IFN-β has been used successfully to treat diverse diseases, emphasis has been placed on understanding the role of IFN-β in sepsis. Analyses of mouse models of septic shock attribute a pro-inflammatory role to IFN-β in sepsis development. As anti-inflammatory treatments in humans with antibodies to TNF-α or IL1-β resulted disappointing, cytokine modulation approaches were discouraged and neutralization of IFN-β has not been pursued for sepsis treatment. In the case of patients with delayed sepsis and immunosuppression, there is a debate as to whether the use of specific cytokines would restore the deactivated immune response. Recent reports show an association of low IFN-β levels with the hyporesponsive state of monocytes from sepsis patients and after endotoxin tolerance induction. These data, discussed here, project a role for IFN-β in restoring monocyte function and reversing immunosuppression, and suggest IFN-β-based additive immunomodulatory therapy. The dichotomy in putative therapeutic approaches, involving reduction or an increase in IFN-β levels, mirrors the contrasting nature of the early hyperinflammatory state and the delayed immunosuppression phase.GR was funded by a predoctoral fellowship from the “La Caixa” program. This work was supported by grants from the Ministry of Economy and Competitivity (MINECO/FEDER PI11/00950 and SAF2016-80803-R to DB, and SAF2013-42289-R and SAF2016-75456-R to CM-A), from the Fundación Alfonso Martin Escudero to CM-A, and from the Community of Madrid (MITIC S2011/BMD2502 to DB, MM, and CM-A). We acknowledge support of the publication fee by the CSIC Open Access Support Initiative through its Unit of Information Resources for Research (URICI).Peer reviewedPeer Reviewe

    Targeting Macrophages: Friends or Foes in Disease?

    No full text
    Macrophages occupy a prominent position during immune responses. They are considered the final effectors of any given immune response since they can be activated by a wide range of surface ligands and cytokines to acquire a continuum of functional states. Macrophages are involved in tissue homeostasis and in the promotion or resolution of inflammatory responses, causing tissue damage or helping in tissue repair. Knowledge in macrophage polarization has significantly increased in the last decade. Biomarkers, functions, and metabolic states associated with macrophage polarization status have been defined both in murine and human models. Moreover, a large body of evidence demonstrated that macrophage status is a dynamic process that can be modified. Macrophages orchestrate virtually all major diseases-sepsis, infection, chronic inflammatory diseases (rheumatoid arthritis), neurodegenerative disease, and cancer-and thus they represent attractive therapeutic targets. In fact, the possibility to reprogram macrophage status is considered as a promising strategy for designing novel therapies. Here, we will review the role of different tissue macrophage populations in the instauration and progression of inflammatory and non-inflammatory pathologies, as exemplified by rheumatoid arthritis, osteoporosis, glioblastoma, and tumor metastasis. We will analyze: 1) the potential as therapeutic targets of recently described macrophage populations, such as osteomacs, reported to play an important role in bone formation and homeostasis or metastasis-associated macrophages (MAMs), key players in the generation of premetastatic niche; 2) the current and potential future approaches to target monocytes/macrophages and their inflammation-causing products in rheumatoid arthritis; and 3) the development of novel intervention strategies using oncolytic viruses, immunomodulatory agents, and checkpoint inhibitors aiming to boost M1-associated anti-tumor immunity. In this review, we will focus on the potential of macrophages as therapeutic targets and discuss their involvement in state-of-the-art strategies to modulate prevalent pathologies of aging societies

    Adapt to Persist: Glioblastoma Microenvironment and Epigenetic Regulation on Cell Plasticity

    No full text
    Glioblastoma (GBM) is the most frequent and aggressive brain tumor, characterized by great resistance to treatments, as well as inter- and intra-tumoral heterogeneity. GBM exhibits infiltration, vascularization and hypoxia-associated necrosis, characteristics that shape a unique microenvironment in which diverse cell types are integrated. A subpopulation of cells denominated GBM stem-like cells (GSCs) exhibits multipotency and self-renewal capacity. GSCs are considered the conductors of tumor progression due to their high tumorigenic capacity, enhanced proliferation, invasion and therapeutic resistance compared to non-GSCs cells. GSCs have been classified into two molecular subtypes: proneural and mesenchymal, the latter showing a more aggressive phenotype. Tumor microenvironment and therapy can induce a proneural-to-mesenchymal transition, as a mechanism of adaptation and resistance to treatments. In addition, GSCs can transition between quiescent and proliferative substates, allowing them to persist in different niches and adapt to different stages of tumor progression. Three niches have been described for GSCs: hypoxic/necrotic, invasive and perivascular, enhancing metabolic changes and cellular interactions shaping GSCs phenotype through metabolic changes and cellular interactions that favor their stemness. The phenotypic flexibility of GSCs to adapt to each niche is modulated by dynamic epigenetic modifications. Methylases, demethylases and histone deacetylase are deregulated in GSCs, allowing them to unlock transcriptional programs that are necessary for cell survival and plasticity. In this review, we described the effects of GSCs plasticity on GBM progression, discussing the role of GSCs niches on modulating their phenotype. Finally, we described epigenetic alterations in GSCs that are important for stemness, cell fate and therapeutic resistance
    corecore