22 research outputs found

    Steady and Time-Resolved Photoelectron Spectra Based on Nuclear Ensembles

    Get PDF
    Semiclassical methods to simulate both steady and time-resolved photoelectron spectra are presented. These approaches provide spectra with absolute band shapes and vibrational broadening beyond the Condon approximation, using an ensemble of nuclear configurations built either via distribution samplings or nonadiabatic dynamics simulations. Two models to account for the electron kinetic energy modulation due to vibrational overlaps between initial and final states are discussed. As illustrative examples, the steady photoelectron spectra of imidazole and adenine and the time- and kinetic-energy-resolved photoelectron spectrum of imidazole were simulated within the frame of time-dependent density functional theory. While for steady spectra only electrons ejected with maximum allowed kinetic energy need to be considered, it is shown that to properly describe time-resolved spectra, electrons ejected with low kinetic energies must be considered in the simulations as well. The results also show that simulations based either on full computation of photoelectron cross section or on simple Dyson orbital norms provide results of similar quality

    Identification and phylogenetic comparison of p53 in two distinct mussel species (Mytilus)

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B. V. for personal use, not for redistribution. The definitive version was published in Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 140 (2005): 237-250, doi:10.1016/j.cca.2005.02.011.The extent to which humans and wildlife are exposed to anthropogenic challenges is an important focus of environmental research. Potential use of p53 gene family marker(s) for aquatic environmental effects monitoring is the long-term goal of this research. The p53 gene is a tumor suppressor gene that is fundamental in cell cycle control and apoptosis. It is mutated or differentially expressed in about 50% of all human cancers and p53 family members are differentially expressed in leukemic clams. Here, we report the identification and characterization of the p53 gene in two species of Mytilus, Mytilus edulis and Mytilus trossulus, using RT-PCR with degenerate and specific primers to conserved regions of the gene. The Mytilus p53 proteins are 99.8% identical and closely related to clam (Mya) p53. In particular, the 3′ untranslated regions were examined to gain understanding of potential post-transcriptional regulatory pathways of p53 expression. We found nuclear and cytoplasmic polyadenylation elements, adenylate/uridylate-rich elements, and a K-box motif previously identified in other, unrelated genes. We also identified a new motif in the p53 3′UTR which is highly conserved across vertebrate and invertebrate species. Differences between the p53 genes of the two Mytilus species may be part of genetic determinants underlying variation in leukemia prevalence and/or development, but this requires further investigation. In conclusion, the conserved regions in these p53 paralogues may represent potential control points in gene expression. This information provides a critical first step in the evaluation of p53 expression as a potential marker for environmental assessment.AFM was supported by the Greater Vancouver Regional District, BC, Canada, and RLC was supported by STAR grant R82935901 from the Environmental Protection Agency (USA)

    An in-depth cognitive examination of individuals with superior face recognition skills

    Get PDF
    Previous work has reported the existence of "super-recognisers" (SRs), or individuals with extraordinary face recognition skills. However, the precise underpinnings of this ability have not yet been investigated. In this paper we examine (a) the face-specificity of super recognition, (b) perception of facial identity in SRs, (c) whether SRs present with enhancements in holistic processing and (d) the consistency of these findings across different SRs. A detailed neuropsychological investigation into six SRs indicated domain-specificity in three participants, with some evidence of enhanced generalised visuo-cognitive or socio-emotional processes in the remaining individuals. While superior face-processing skills were restricted to face memory in three of the SRs, enhancements to facial identity perception were observed in the others. Notably, five of the six participants showed at least some evidence of enhanced holistic processing. These findings indicate cognitive heterogeneity in the presentation of superior face recognition, and have implications for our theoretical understanding of the typical face-processing system and the identification of superior face-processing skills in applied settings

    RCEA: Real-time, Continuous Emotion Annotation for collecting precise mobile video ground truth labels

    Get PDF
    Collecting accurate and precise emotion ground truth labels for mobile video watching is essential for ensuring meaningful predictions. However, video-based emotion annotation techniques either rely on post-stimulus discrete self-reports, or allow real-time, continuous emotion annotations (RCEA) only for desktop settings. Following a user-centric approach, we designed an RCEA technique for mobile video watching, and validated its usability and reliability in a controlled, indoor (N=12) and later outdoor (N=20) study. Drawing on physiological measures, interaction logs, and subjective workload reports, we show that (1) RCEA is perceived to be usable for annotating emotions while mobile video watching, without increasing users' mental workload (2) the resulting time-variant annotations are comparable with intended emotion attributes of the video stimuli (classification error for valence: 8.3%; arousal: 25%). We contribute a validated annotation technique and associated annotation fusion method, that is suitable for collecting fine-grained emotion annotations while users watch mobile videos

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Incorporating Women’s Voices Into Wyoming Rangeland Research and Extension

    No full text
    On the Ground • The field of rangeland science and management is working to incorporate women’s voices and a better understanding of women’s decision-making roles into our research priorities and Extension practices. • The Wyoming Women in Range program offers a success story of Extension programming designed to encourage women’s participation and engagement in rangeland management. • Further research is needed to understand ranching women’s needs and responsibilities as business operators, natural resource managers, wives, mothers, and off-farm wage earners.The Rangelands archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform March 202
    corecore