155 research outputs found
A pair of temperate sub-Neptunes transiting the star EPIC 212737443
We report the validation of a new planetary system around the K3 star EPIC 212737443 using a combination of K2 photometry, follow-up high resolution imaging and spectroscopy. The system consists of two sub-Neptune sized transiting planets with radii of 2.6R⊕, and 2.7R⊕, with orbital periods of 13.6 days and 65.5 days, equilibrium temperatures of 536 K and 316 K respectively. In the context of validated K2 systems, the outer planet has the longest precisely measured orbital period, as well as the lowest equilibrium temperature for a planet orbiting a star of spectral type earlier than M. The two planets in this system have a mutual Hill radius of ΔRH = 36, larger than most other known transiting multi-planet systems, suggesting the existence of another (possibly non-transiting) planet, or that the system is not maximally packed
VLT, GROND and Danish telescope observations of transits in the TRAPPIST-1 system
Funding: UGJ acknowledges funding from the Novo Nordisk Foundation Interdisciplinary Synergy Programme grant no. NNF19OC0057374 and from the European Union H2020-MSCA-ITN-2019 under Grant no. 860470 (CHAMELEON). NP’s work was supported by Fundação para a Ciência e a Tecnologia (FCT) through the research grants UIDB/04434/2020 and UIDP/04434/2020. PLP was partly funded by Programa de Iniciación en Investigación-Universidad de Antofagasta, INI-17-03.TRAPPIST-1 is an ultra-cool dwarf that hosts seven known transiting planets. We present photometry of the system obtained using three telescopes at ESO La Silla (the Danish 1.54-m telescope and the 2.2-m MPI telescope) and Paranal (Unit Telescope 1 of the Very Large Telescope). We obtained 18 light curves from the Danish telescope, eight from the 2.2-m and four from the VLT. From these we measure 25 times of mid-transit for four of the planets (b, c, f, g). These light curves and times of mid-transit will be useful in determining the masses and radii of the planets, which show variations in their transit times due to gravitational interactions.PostprintPeer reviewe
Digging deeper into the dense galactic globular cluster Terzan 5 with electron-multiplying CCDs : variable star detection and new discoveries
Funding: Support for this project is provided by ANID’s Millennium Science Initiative through grant ICN12_009, awarded to the Millennium Institute of Astrophysics (MAS), and by ANID’s Basal project FB210003. M.C. acknowledges additional support from FONDECYT Regular grant #1171273. N.P. acknowledge financial support by FCT–Fundação para a Ciência e a Tecnologia through Portuguese national funds and by FEDER through COMPETE2020-Programa Operacional Competitividade e Internacionalização by the grants UIDB/04434/2020 and UIDP/04434/2020.Context. High frame-rate imaging was employed to mitigate the effects of atmospheric turbulence (seeing) in observations of globular cluster Terzan 5. Aims. High-precision time-series photometry has been obtained with the highest angular resolution so far taken in the crowded central region of Terzan 5, with ground-based telescopes, and ways to avoid saturation of the brightest stars in the field observed. Methods. The Electron-Multiplying Charge Coupled Device (EMCCD) camera installed at the Danish 1.54-m telescope at the ESO La Silla Observatory was employed to produce thousands of short-exposure time images (ten images per second) that were stacked to produce the normal-exposure-time images (minutes). We employed difference image analysis in the stacked images to produce high-precision photometry using the DanDIA pipeline. Results. Light curves of 1670 stars with 242 epochs were analyzed in the crowded central region of Terzan 5 to statistically detect variable stars in the field observed. We present a possible visual counterpart outburst at the position of the pulsar J1748-2446N, and the visual counterpart light curve of the low-mass X-ray binary CX 3. Additionally, we present the discovery of 4 semiregular variables. We also present updated ephemerides and properties of the only RR Lyrae star previously known in the field covered by our observations in Terzan 5. Finally, we report a significant displacement of two sources by ~0.62 and 0.59 arcseconds with respect to their positions in previous images available in the literature.Peer reviewe
Physical properties of near-Earth asteroid (2102) Tantalus from multiwavelength observations
Between 2010 and 2017 we have collected new optical and radar observations of the potentially hazardous asteroid (2102) Tantalus from the ESO NTT and Danish telescopes at the La Silla Observatory and from the Arecibo planetary radar. The object appears to be nearly spherical, showing a low amplitude light-curve variation and limited large-scale features in the radar images. The spin-state is difficult to constrain with the available data; including a certain light-curve subset significantly changes the spin-state estimates, and the uncertainties on period determination are significant. Constraining any change in rotation rate was not possible, despite decades of observations. The convex lightcurve-inversion model, with rotational pole at λ = 210 ± 41○ and β = −30 ± 35○, is more flattened than the two models reconstructed by including radar observations: with prograde (λ = 36 ± 23○, β = 30 ± 15○), and with retrograde rotation mode (λ = 180 ± 24○, β = −30 ± 16○). Using data from WISE we were able to determine that the prograde model produces the best agreement in size determination between radar and thermophysical modelling. Radar measurements indicate possible variation in surface properties, suggesting one side might have lower radar albedo and be rougher at centimetre-to-decimetre scale than the other. However, further observations are needed to confirm this. Thermophysical analysis indicates a surface covered in fine-grained regolith, consistent with radar albedo and polarisation ratio measurements. Finally, geophysical investigation of the spin-stability of Tantalus shows that it could be exceeding its critical spin-rate via cohesive forces
High-precision photometry by telescope defocussing - VI. WASP-24, WASP-25 and WASP-26
The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013/) under grant agreement nos. 229517 and 268421. This publication was supported by grants NPRP 09-476-1-078 and NPRP X-019-1-006 from Qatar National Research Fund (a member of Qatar Foundation). TCH acknowledges financial support from the Korea Research Council for Fundamental Science and Technology (KRCF) through the Young Research Scientist Fellowship Programme and is supported by the KASI (Korea Astronomy and Space Science Institute) grant 2012-1-410-02/2013-9-400-00. SG, XW and XF acknowledge the support from NSFC under the grant no. 10873031. The research is supported by the ASTERISK project (ASTERoseismic Investigations with SONG and Kepler) funded by the European Research Council (grant agreement no. 267864). DR, YD, AE, FF (ARC), OW (FNRS research fellow) and J Surdej acknowledge support from the Communauté française de Belgique – Actions de recherche concertées – Académie Wallonie-Europe.We present time series photometric observations of 13 transits in the planetary systems WASP-24, WASP-25 and WASP-26. All three systems have orbital obliquity measurements, WASP-24 and WASP-26 have been observed with Spitzer, and WASP-25 was previously comparatively neglected. Our light curves were obtained using the telescope-defocussing method and have scatters of 0.5–1.2 mmag relative to their best-fitting geometric models. We use these data to measure the physical properties and orbital ephemerides of the systems to high precision, finding that our improved measurements are in good agreement with previous studies. High-resolution Lucky Imaging observations of all three targets show no evidence for faint stars close enough to contaminate our photometry. We confirm the eclipsing nature of the star closest to WASP-24 and present the detection of a detached eclipsing binary within 4.25 arcmin of WASP-26.Publisher PDFPeer reviewe
Large-scale changes of the cloud coverage in the ε Indi Ba,Bb system
We present the results of 14 nights of I-band photometric monitoring of the nearby brown dwarf binary, ε Indi Ba,Bb. Observations were acquired over 2 months, and total close to 42 hours of coverage at a typically high cadence of 1.4 minutes. At a separation of just 0.7″, we do not resolve the individual components, and so effectively treat the binary as if it were a single object. However, ε Indi Ba (spectral type T1) is the brightest known T-type brown dwarf, and is expected to dominate the photometric signal. We typically find no strong variability associated with the target during each individual night of observing, but see significant changes in mean brightness - by as much as 0.10 magnitudes - over the 2 months of the campaign. This strong variation is apparent on a timescale of at least 2 days. We detect no clear periodic signature, which suggests we may be observing the T1 brown dwarf almost pole-on, and the days-long variability in mean brightness is caused by changes in the large-scale structure of the cloud coverage. Dynamic clouds will very likely produce lightning, and complementary high cadence V-band and Hα images were acquired to search for the emission signatures associated with stochastic ‘strikes’. We report no positive detections for the target in either of these passbands
Star-spot activity, orbital obliquity, transmission spectrum, physical properties, and TTVs of the HATS-2 planetary system
Our aim in this paper is to refine the orbital and physical parameters of the
HATS-2 planetary system and study transit timing variations and atmospheric
composition thanks to transit observations that span more than ten years and
that were collected using different instruments and pass-band filters. We also
investigate the orbital alignment of the system by studying the anomalies in
the transit light curves induced by starspots on the photosphere of the parent
star. We analysed new transit events from both ground-based telescopes and
NASA's TESS mission. Anomalies were detected in most of the light curves and
modelled as starspots occulted by the planet during transit events. We fitted
the clean and symmetric light curves with the JKTEBOP code and those affected
by anomalies with the PRISM+GEMC codes to simultaneously model the photometric
parameters of the transits and the position, size, and contrast of each
starspot. We found consistency between the values we found for the physical and
orbital parameters and those from the discovery paper and ATLAS9 stellar
atmospherical models. We identified different sets of consecutive
starspot-crossing events that temporally occurred in less than five days. Under
the hypothesis that we are dealing with the same starspots, occulted twice by
the planet during two consecutive transits, we estimated the rotational period
of the parent star and, in turn the projected and the true orbital obliquity of
the planet. We find that the system is well aligned. We identified the possible
presence of transit timing variations in the system, which can be caused by
tidal orbital decay, and we derived a low-resolution transmission spectrum.Comment: 23 pages, 21 figures, Accepted for publication in Astronomy &
Astrophysic
OGLE-2017-BLG-0329L: A Microlensing Binary Characterized with Dramatically Enhanced Precision Using Data from Space-based Observations
Mass measurements of gravitational microlenses require one to determine the microlens parallax π E, but precise π E measurement, in many cases, is hampered due to the subtlety of the microlens-parallax signal combined with the difficulty of distinguishing the signal from those induced by other higher-order effects. In this work, we present the analysis of the binary-lens event OGLE-2017-BLG-0329, for which π E is measured with a dramatically improved precision using additional data from space-based Spitzer observations. We find that while the parallax model based on the ground-based data cannot be distinguished from a zero-π E model at the 2σ level, the addition of the Spitzer data enables us to identify two classes of solutions, each composed of a pair of solutions according to the well-known ecliptic degeneracy. It is found that the space-based data reduce the measurement uncertainties of the north and east components of the microlens-parallax vector π E by factors ~18 and ~4, respectively. With the measured microlens parallax combined with the angular Einstein radius measured from the resolved caustic crossings, we find that the lens is composed of a binary with component masses of either (M1, M2) ~ (1.1, 0.8) M⊙ or ~(0.4, 0.3) M⊙ according to the two solution classes. The first solution is significantly favored but the second cannot be securely ruled out based on the microlensing data alone. However, the degeneracy can be resolved from adaptive optics observations taken ~10 years after the event
- …