365 research outputs found
Reheating in the Presence of Inhomogeneous Noise
Explosive particle production due to parametric resonance is a crucial
feature of reheating in an inflationary cosmology. Coherent oscillations of the
inflaton field lead to a periodically varying mass in the evolution equation of
matter and gravitational fluctuations and often induce a parametric resonance
instability. In a previous paper (hep-ph/9709273) it was shown that homogeneous
(i.e. space independent) noise leads to an increase of the generalized Floquet
exponent for all modes, at least if the noise is temporally uncorrelated. Here
we extend the results to the physically more realistic case of spatially
inhomogeneous noise. We demonstrate - modulo some mathematical fine points
which are addressed in a companion paper - that the Floquet exponent is a non-
decreasing function of the amplitude of the noise. We provide numerical
evidence for an even stronger statement, namely that in the presence of
inhomogeneous noise, the Floquet exponent of each mode is larger than the
maximal Floquet exponent of the system in the absence of noise.Comment: 21 pages, 4 figure
Pancreatitis with an unusual fatal complication following endoscopic retrograde cholangiopancreaticography: a case report
<p>Abstract</p> <p>Introduction</p> <p>Endoscopic retrograde cholangiopancreaticography has been the treatment of choice for stones in the common bile duct. Although the procedure is usually safe, procedure-related complications do occur.</p> <p>Case presentation</p> <p>A case of pancreatitis following endoscopic retrograde cholangiopancreaticography is described in a 55-year-old woman. After an uneventful recovery the patient's condition deteriorated rapidly 16 days after the endoscopic retrograde cholangiopancreaticography, and the patient died within 1 hour. Post-mortem examination revealed massive intrapulmonary fat embolism. The complications of endoscopic retrograde cholangiopancreaticography and pancreatitis are described.</p> <p>Conclusion</p> <p>Fat embolism can occur after the remission of pancreatitis and pancreatic necrosis may be overlooked on contrast-enhanced computed tomography scanning.</p
Amphibious Seismic Survey Images Plate Interface at 1960 Chile Earthquake
The southern central Chilean margin at the site of the largest historically recorded earthquake in the Valdivia region, in 1960 (Mw = 9.5), is part of the 5000-km-long active subduction system whose geodynamic evolution is controversially debated and poorly understood. Covering the area between 36° and 40°S, the oceanic crust is segmented by prominent fracture zones. The offshore forearc and its onshore continuation show a complex image with segments of varying geophysical character, and several fault systems active during the past 24 m.y.
In autumn 2001, the project SPOC was organized to study the Subduction Processes Off Chile, with a focus on the seismogenic coupling zone and the forearc. The acquired seismic data crossing the Chilean subduction system were gathered in a combined offshore-onshore survey and provide new insights into the lithospheric structure and evolution of active margins with insignificant frontal accretion
Slow Dissociation of a Charged Ligand: Analysis of the Primary Quinone QA Site of Photosynthetic Bacterial Reaction Centers
Reaction centers (RCs) are integral membrane proteins that undergo a series of electron transfer reactions during the process of photosynthesis. In the QA site of RCs from Rhodobacter sphaeroides, ubiquinone-10 is reduced, by a single electron transfer, to its semiquinone. The neutral quinone and anionic semiquinone have similar affinities, which is required for correct in situ reaction thermodynamics. A previous study showed that despite similar affinities, anionic quinones associate and dissociate from the QA site at rates ≈104 times slower than neutral quinones indicating that anionic quinones encounter larger binding barriers (Madeo, J.; Gunner, M. R. Modeling binding kinetics at the QA site in bacterial reaction centers. Biochemistry2005, 44, 10994–11004). The present study investigates these barriers computationally, using steered molecular dynamics (SMD) to model the unbinding of neutral ground state ubiquinone (UQ) and its reduced anionic semiquinone (SQ–) from the QA site. In agreement with experiment, the SMD unbinding barrier for SQ– is larger than for UQ. Multi Conformational Continuum Electrostatics (MCCE), used here to calculate the binding energy, shows that SQ– and UQ have comparable affinities. In the QA site, there are stronger binding interactions for SQ– compared to UQ, especially electrostatic attraction to a bound non-heme Fe2+. These interactions compensate for the higher SQ– desolvation penalty, allowing both redox states to have similar affinities. These additional interactions also increase the dissociation barrier for SQ– relative to UQ. Thus, the slower SQ– dissociation rate is a direct physical consequence of the additional binding interactions required to achieve a QA site affinity similar to that of UQ. By a similar mechanism, the slower association rate is caused by stronger interactions between SQ– and the polar solvent. Thus, stronger interactions for both the unbound and bound states of charged and highly polar ligands can slow their binding kinetics without a conformational gate. Implications of this for other systems are discussed
Kissing G Domains of MnmE Monitored by X-Ray Crystallography and Pulse Electron Paramagnetic Resonance Spectroscopy
The authors of this research article demonstrate the nature of the conformational changes MnmE was previously suggested to undergo during its GTPase cycle, and show the nucleotide-dependent dynamic movements of the G domains around two swivel positions relative to the rest of the protein. These movements are of crucial importance for understanding the mechanistic principles of this GAD
Membrane-Anchored HIV-1 N-Heptad Repeat Peptides Are Highly Potent Cell Fusion Inhibitors via an Altered Mode of Action
Peptide inhibitors derived from HIV-gp41 envelope protein play a pivotal role in deciphering the molecular mechanism of HIV-cell fusion. According to accepted models, N-heptad repeat (NHR) peptides can bind two targets in an intermediate fusion conformation, thereby inhibiting progression of the fusion process. In both cases the orientation towards the endogenous intermediate conformation should be important. To test this, we anchored NHR to the cell membrane by conjugating fatty acids with increasing lengths to the N- or C-terminus of N36, as well as to two known N36 mutants; one that cannot bind C-heptad repeat (CHR) but can bind NHR (N36 MUTe,g), and the second cannot bind to either NHR or CHR (N36 MUTa,d). Importantly, the IC50 increased up to 100-fold in a lipopeptide-dependent manner. However, no preferred directionality was observed for the wild type derived lipopeptides, suggesting a planar orientation of the peptides as well as the endogenous NHR region on the cell membrane. Furthermore, based on: (i) specialized analysis of the inhibition curves, (ii) the finding that N36 conjugates reside more on the target cells that occupy the receptors, and (iii) the finding that N36 MUTe,g acts as a monomer both in its soluble form and when anchored to the cell membrane, we suggest that anchoring N36 to the cell changes the inhibitory mode from a trimer which can target both the endogenous NHR and CHR regions, to mainly monomeric lipopetides that target primarily the internal NHR. Besides shedding light on the mode of action of HIV-cell fusion, the similarity between functional regions in the envelopes of other viruses suggests a new approach for developing potent HIV-1 inhibitors
NMR methods to monitor the enzymatic depolymerization of heparin
Heparin and the related glycosaminoglycan, heparan sulfate, are polydisperse linear polysaccharides that mediate numerous biological processes due to their interaction with proteins. Because of the structural complexity and heterogeneity of heparin and heparan sulfate, digestion to produce smaller oligosaccharides is commonly performed prior to separation and analysis. Current techniques used to monitor the extent of heparin depolymerization include UV absorption to follow product formation and size exclusion or strong anion exchange chromatography to monitor the size distribution of the components in the digest solution. In this study, we used 1H nuclear magnetic resonance (NMR) survey spectra and NMR diffusion experiments in conjunction with UV absorption measurements to monitor heparin depolymerization using the enzyme heparinase I. Diffusion NMR does not require the physical separation of the components in the reaction mixture and instead can be used to monitor the reaction solution directly in the NMR tube. Using diffusion NMR, the enzymatic reaction can be stopped at the desired time point, maximizing the abundance of larger oligosaccharides for protein-binding studies or completion of the reaction if the goal of the study is exhaustive digestion for characterization of the disaccharide composition. In this study, porcine intestinal mucosa heparin was depolymerized using the enzyme heparinase I. The unsaturated bond formed by enzymatic cleavage serves as a UV chromophore that can be used to monitor the progress of the depolymerization and for the detection and quantification of oligosaccharides in subsequent separations. The double bond also introduces a unique multiplet with peaks at 5.973, 5.981, 5.990, and 5.998Â ppm in the 1H-NMR spectrum downfield of the anomeric region. This multiplet is produced by the proton of the C-4 double bond of the non-reducing end uronic acid at the cleavage site. Changes in this resonance were used to monitor the progression of the enzymatic digestion and compared to the profile obtained from UV absorbance measurements. In addition, in situ NMR diffusion measurements were explored for their ability to profile the different-sized components generated over the course of the digestion
HIV-1 gp41 and TCRα Trans-Membrane Domains Share a Motif Exploited by the HIV Virus to Modulate T-Cell Proliferation
Viruses have evolved several strategies to modify cellular processes and evade the immune response in order to successfully infect, replicate, and persist in the host. By utilizing in-silico testing of a transmembrane sequence library derived from virus protein sequences, we have pin-pointed a nine amino-acid motif shared by a group of different viruses; this motif resembles the transmembrane domain of the α-subunit of the T-cell receptor (TCRα). The most striking similarity was found within the immunodeficiency virus (SIV and HIV) glycoprotein 41 TMD (gp41 TMD). Previous studies have shown that stable interactions between TCRα and CD3 are localized to this nine amino acid motif within TCRα, and a peptide derived from it (TCRα TMD, GLRILLLKV) interfered and intervened in the TCR function when added exogenously. We now report that the gp41 TMD peptide co-localizes with CD3 within the TCR complex and inhibits T cell proliferation in vitro. However, the inhibitory mechanism of gp41 TMD differs from that of the TCRα TMD and also from the other two known immunosuppressive regions within gp41
- …